Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 41(8): 1166-1179, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33236787

RESUMEN

Asarone isomers are naturally occurring in Acorus calamus Linné, Guatteria gaumeri Greenman, and Aniba hostmanniana Nees. These secondary plant metabolites belong to the class of phenylpropenes (phenylpropanoids or alkenylbenzenes). They are further chemically classified into the propenylic trans- and cis-isomers α-asarone and ß-asarone and the allylic γ-asarone. Flavoring, as well as potentially pharmacologically useful properties, enables the application of asarone isomers in fragrances, food, and traditional phytomedicine not only since their isolation in the 1950s. However, efficacy and safety in humans are still not known. Preclinical evidence has not been systematically studied, and several pharmacological effects have been reported for extracts of Acorus calamus and propenylic asarone isomers. Toxicological data are rare and not critically evaluated altogether in the 21st century yet. Therefore, within this review, available toxicological data of asarone isomers were assessed in detail. This assessment revealed that cardiotoxicity, hepatotoxicity, reproductive toxicity, and mutagenicity as well as carcinogenicity were described for propenylic asarone isomers with varying levels of reliability. The toxicodynamic profile of γ-asarone is unknown except for mutagenicity. Based on the estimated daily exposure and reported adverse effects, officials restricted or published recommendations for the use of ß-asarone and preparations of Acorus calamus. In contrast, α-asarone and γ-asarone were not directly addressed due to a limited data situation.


Asunto(s)
Derivados de Alilbenceno/toxicidad , Anisoles/toxicidad , Derivados de Alilbenceno/farmacocinética , Animales , Anisoles/farmacocinética , Carcinógenos/toxicidad , Cardiotoxicidad/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Isomerismo , Reproducción/efectos de los fármacos
2.
Food Chem Toxicol ; 142: 111484, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32526244

RESUMEN

The phenylpropenes α-asarone and ß-asarone are widely spread in the marsh plant Acorus calamus. Both isomers are classified as carcinogenic in rodents. However, the respective genotoxic mechanisms are not elucidated so far. The present study gives deeper insights into the genotoxic effects of asarone isomers as well as their known oxidative phase I metabolites, (E)-3'-oxoasarone and asarone epoxide. We show that asarone metabolites highly increase DNA strand breaks after 1 h of incubation, markedly metabolic activation contributes to their carcinogenic mode of action. All test compounds act as aneugens and potently enhance the amounts of micronuclei in binuclear cells. However, a prolonged incubation time of 24 h results in a decrease of DNA damage. This work suggests that asarone metabolites also induce DNA double strand breaks , why we put a strong focus on homologous recombination and non-homologous end joining. The obtained results herein indicate that asarone epoxide-induced DNA strand breaks are repaired via a homologous repair pathway.


Asunto(s)
Anisoles/toxicidad , Roturas del ADN de Doble Cadena/efectos de los fármacos , Mutágenos/toxicidad , Activación Metabólica , Derivados de Alilbenceno , Anisoles/química , Anisoles/metabolismo , Células Hep G2 , Humanos , Isomerismo , Mutágenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...