Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diabetes ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701365

RESUMEN

Accumulating data suggest a role for the lysosomal protease cathepsin S (CTSS) in type 1 diabetes. Circulating CTSS is increased in type 1 diabetes; however, whether CTSS has protective or deleterious effects is unclear. The study's objectives were to examine the biomarker potential of CTSS in new-onset type 1 diabetes, and to investigate the expression and secretion of CTSS in human islets and ß cells. The CTSS level was analyzed in serum from children with new-onset type 1 diabetes and autoantibody-positive and -negative siblings by ELISA. The expression and secretion of CTSS were evaluated in isolated human islets and EndoC-ßH5 cells by real-time qPCR, immunoblotting, and ELISA. The CTSS serum level was elevated in children with new-onset type 1 diabetes and positively associated with autoantibody status in healthy siblings. Human islets and EndoC-ßH5 cells demonstrated induction and secretion of CTSS after exposure to pro-inflammatory cytokines, a model system of islet inflammation. Analysis of publicly available single-cell RNA sequencing data on human islets showed that elevated CTSS expression was exclusive for the ß cells in donors with type 1 diabetes as compared to non-diabetic donors. These findings suggest a potential of CTSS as a diagnostic biomarker in type 1 diabetes.

3.
PLoS One ; 18(9): e0289258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682921

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease with an unexplained rising incidence for which environmental factors like gluten may play a role. Previously, we showed that a gluten-free (GF) diet provided strictly in utero reduces the autoimmune diabetes incidence in Non-Obese Diabetic (NOD) mice compared to a gluten-containing standard (STD) diet. The current study was initiated to elucidate possible mechanisms behind the diabetes-alleviating effect of the same diet intervention. NOD mice received either a GF Altromin diet or a STD Altromin diet during pregnancy. Female offspring from both groups were fed a STD diet throughout life and their diabetes incidence was recorded for 200 days. The following parameters were measured in 13-week-old female offspring: insulitis degree, glucose and insulin tolerance, and plasma insulin autoantibody titer. The diet intervention showed no reduction in autoimmune diabetes incidence, insulitis degree, glucose nor insulin tolerance and plasma insulin autoantibody titer. In conclusion, this study could not replicate the previously observed diabetes alleviative effects of a maternal gluten-free diet in NOD mouse offspring and could therefore not further elucidate potential mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 1 , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Femenino , Ratones , Embarazo , Autoanticuerpos , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 1/dietoterapia , Dieta Sin Gluten , Glucosa , Glútenes , Insulinas , Ratones Endogámicos NOD
5.
Diabetes Metab Res Rev ; 39(7): e3678, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395313

RESUMEN

AIMS: To investigate if HLA risk haplotypes and HbA1c levels are associated with the expression levels of innate anti-viral immune pathway genes in type 1 diabetes. MATERIALS AND METHODS: We investigated RNA expression levels of innate anti-viral immune pathway genes in laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection study and the network of Pancreatic Organ Donors in relation to HLA risk haplotypes (non-predisposed and predisposed) and HbA1c levels (normal, elevated, and high). RESULTS: The expression of innate anti-viral immune genes (TLR7, OAS1, OAS3 etc.) was significantly increased in individuals with predisposing vs non-predisposing HLA haplotypes. Also, the expression of several of the innate anti-viral immune genes from the HLA risk haplotype analysis was significantly increased in the group with high vs normal HbA1c. Furthermore, the gene expression of OAS2 was significantly increased in the group with high HbA1c vs elevated HbA1c. CONCLUSIONS: Expression of innate anti-viral immune pathway genes was increased in individuals with predisposing HLA risk haplotypes and those with high HbA1c. This indicates that type 1 diabetes might well begin with alterations in innate anti-viral immunity, and already at this stage be associated with HLA risk haplotypes.

6.
J Diabetes Complications ; 37(9): 108563, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499293

RESUMEN

INTRODUCTION: The prevalence of obesity and associated comorbidities have increased to epidemic proportions globally. Paternal obesity is an independent risk factor for developing obesity and type 2 diabetes in the following generation, and growing evidence suggests epigenetic inheritance as a mechanism for this predisposition. How and why obesity induces epigenetic changes in sperm cells remain to be clarified in detail. Yet, recent studies show that alterations in sperm content of transfer RNA-derived small RNAs (tsRNAs) can transmit the effects of paternal obesity to offspring. Obesity is closely associated with low-grade chronic inflammation. Thus, we evaluated whether the anti-inflammatory agent 5-aminosalicylic acid (5-ASA) could intervene in the transmission of epigenetic inheritance of paternal obesity by reducing the inflammatory state in obese fathers. METHODS: Male C57BL/6JBomTac mice were either fed a high-fat diet or a high-fat diet with 5-ASA for ten weeks before mating. The offspring metabolic phenotype was evaluated, and spermatozoa from sires were isolated for assessment of specific tsRNAs levels. RESULTS: 5-ASA intervention reduced the levels of Glu-CTC tsRNAs in sperm cells and improved glucose tolerance in female offspring fed a chow diet. Paternal high-fat diet-induced obesity per se had only a moderate impact on the metabolic phenotype of both male and female offspring in our setting. CONCLUSION: The results indicate that the low-grade inflammatory response associated with obesity may be an important factor in epigenetic inheritance of paternal obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Masculino , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Ratones Endogámicos C57BL , Semen/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Espermatozoides , Dieta Alta en Grasa/efectos adversos , Antiinflamatorios , Glucosa/metabolismo
7.
Cells ; 12(12)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371037

RESUMEN

The incidence of the autoimmune disease type 1 diabetes is increasing, likely caused by environmental factors. A gluten-free diet has previously been shown to ameliorate autoimmune diabetes in non-obese diabetic (NOD) mice and humans. Although the exact mechanisms are not understood, interventions influencing the intestinal microbiota early in life affect the risk of type 1 diabetes. Here, we characterize how NOD mice that are fed a gluten-free (GF) diet differ from NOD mice that are fed a gluten-containing standard (STD) diet in terms of their microbiota composition by 16S rRNA gene amplicon sequencing and pancreatic immune environment by real-time quantitative PCR at the prediabetic stage at 6 and 13 weeks of age. Gut microbiota analysis revealed highly distinct microbiota compositions in both the cecum and the colon of GF-fed mice compared with STD-fed mice. The microbiotas of the GF-fed mice were characterized by an increased Firmicutes/Bacteroidetes ratio, an increased abundance of short chain fatty acid (particularly butyrate)-producing bacteria, and a reduced abundance of Lactobacilli compared with STD mice. We found that the insulitis score in the GF mice was significantly reduced compared with the STD mice and that the markers for regulatory T cells and T helper 2 cells were upregulated in the pancreas of the GF mice. In conclusion, a GF diet during pre- and early post-natal life induces shifts in the cecal and colonic microbiota compatible with a less inflammatory environment, providing a likely mechanism for the protective effect of a GF diet in humans.


Asunto(s)
Diabetes Mellitus Tipo 1 , Dieta Sin Gluten , Estado Prediabético , Animales , Femenino , Ratones , Embarazo , Bacterias , Diabetes Mellitus Tipo 1/prevención & control , Ratones Endogámicos NOD , Estado Prediabético/prevención & control , ARN Ribosómico 16S/genética , Linfocitos T Reguladores , Microbioma Gastrointestinal
8.
APMIS ; 131(6): 237-248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36811202

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease with rising incidence. Pre- and manifest T1D is associated with intestinal barrier dysfunction, skewed microbiota composition, and serum dyslipidemia. The intestinal mucus layer protects against pathogens and its structure and phosphatidylcholine (PC) lipid composition may be compromised in T1D, potentially contributing to barrier dysfunction. This study compared prediabetic Non-Obese Diabetic (NOD) mice to healthy C57BL/6 mice by analyzing the intestinal mucus PC profile by shotgun lipidomics, plasma metabolomics by mass spectrometry and nuclear magnetic resonance, intestinal mucus production by histology, and cecal microbiota composition by 16 S rRNA sequencing. Jejunal mucus PC class levels were decreased in early prediabetic NOD vs C57BL/6 mice. In colonic mucus of NOD mice, the level of several PC species was reduced throughout prediabetes. In plasma, similar reductions of PC species were observed in early prediabetic NOD mice, where also increased beta-oxidation was prominent. No histological alterations were found in jejunal nor colonic mucus between the mouse strains. However, the ß-diversity of the cecal microbiota composition differed between prediabetic NOD and C57BL/6 mice, and the bacterial species driving this difference were related to decreased short-chain fatty acid (SCFA)-production in the NOD mice. This study reports reduced levels of PCs in the intestinal mucus layer and plasma of prediabetic NOD mice as well as reduced proportions of SCFA-producing bacteria in cecal content at early prediabetes, possibly contributing to intestinal barrier dysfunction and T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Estado Prediabético , Ratones , Animales , Ratones Endogámicos NOD , Fosfatidilcolinas , Ratones Endogámicos C57BL , Moco
9.
J Autoimmun ; 127: 102795, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35101708

RESUMEN

Experimental and clinical data suggest that a gluten-free diet attenuates the development of type 1 diabetes. A gluten-free diet changes the gut microbiota composition, and such microbial changes are expected to reduce the autoimmune responses. However, in experiments with laboratory mice, a gluten-free diet changes the gut microbiota differently under varying experimental settings, questioning the specific role of the gut microbes. Here we show that a maternal gluten-free diet until weaning of their pups, delayed type 1 diabetes in both dams (parent generation) and offspring (F1 generation) of untreated non-obese diabetic (NOD) mice and in mice treated with a full cocktail of antibiotics that eradicates most of the existing microbiota. Breeding a second (F2) generation of NOD mice, never exposed to the gluten-free diet or the associated microbial changes, also demonstrated a preventative effect on type 1 diabetes even though their parents (the F1 generation) had only been on a gluten-free diet very early in life. Collectively, the experimental data, thus, points towards microbiota-independent dietary protection. Furthermore, both the perinatal gluten-free diet and antibiotic treatment reduced inflammation in the salivary glands and improved glucose challenged beta cell function in the F1 offspring. However, in contrast to the autoimmune response in the pancreas, those changes appeared to be microbiota dependent, as they were missing in the antibiotic treated mice, and do, therefore, not seem to be related to the preventative effect on type 1 diabetes. Interestingly, adoptive transfer of splenocytes from gluten-free fed mice protected NOD.SCID mice from developing diabetes, demonstrating that the anti-diabetic effect of a gluten-free diet was based on early life changes in the evolving immune system. In particular, genes involved in regulation of lymphocyte activation, proliferation, and cell adhesion were highly expressed in the spleen in gluten-free fed mice at weaning compared to control fed mice of the F1 generation, which suggested that gluten promotes autoimmunity by inhibiting immune regulation, though the involvement of the specific genes needs further investigation. In conclusion, gluten-free diet reduces autoimmune inflammation in salivary glands and pancreas in NOD mice in a microbiota-dependent and -independent manner respectively, and has preventative effect on type 1 diabetes by modulating the systemic immune system.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbiota , Animales , Dieta Sin Gluten , Femenino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Embarazo
10.
Oral Dis ; 28(3): 639-647, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33432638

RESUMEN

OBJECTIVES: A lifelong gluten-free (GF) diet ameliorates autoimmune diabetes in non-obese diabetic (NOD) mice and most likely in humans. Besides diabetes, NOD mice develop focal sialadenitis, as seen in Sjögren's syndrome (SS). In humans, type 1 diabetes (T1D) is also linked to SS. Here, we investigated whether a lifelong GF diet influences the immune cell infiltration in the salivary glands and pancreatic islets in NOD mice. METHODS: NOD mice were fed a lifelong (i.e. 13 weeks) GF or gluten-containing standard (STD) diet. Insulitis and sialadenitis were scored on H&E-stained paraffin-embedded sections of pancreas and submandibular glands. Immune cell specificity and distribution were investigated immunohistochemically. RESULTS: There were fewer CD68+ and CD4+ cells in submandibular gland areas with focal sialadenitis as well as reduced insulitis and fewer VEGFR2+ cells in pancreatic islets in mice on GF versus STD diet. The degree of sialadenitis was not significantly lower in GF mice, but sialadenitis and insulitis correlated strongly. Lung weight was lower in GF mice. CONCLUSION: In NOD mice, a lifelong GF diet reduces infiltration of monocytes/macrophages and T cells in salivary glands and inflammation in pancreatic islets, possibly by reducing VEGFR2, indicating that the linked autoimmune diseases, T1D and SS, may be alleviated by a GF diet.


Asunto(s)
Islotes Pancreáticos , Sialadenitis , Síndrome de Sjögren , Animales , Dieta Sin Gluten , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos NOD , Glándulas Salivales
11.
J Autoimmun ; 122: 102674, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182210

RESUMEN

The etiopathogenesis of the autoimmune disease type 1 diabetes (T1D) is still largely unknown, however, both genetic and environmental factors contribute to the development of the disease. A major contact surface for environmental factors is the gastrointestinal (GI) tract, where barrier defects in T1D likely cause diabetogenic antigens to enter the body tissues, contributing to beta-cell autoimmunity. Human and animal research imply that increased intestinal permeability is an important disease determinant, although the underlying methodologies, interpretations and conclusions are diverse. In this review, an updated comprehensive overview on intestinal permeability in patients with T1D and animal models of T1D is provided in the categories: in vivo permeability, ex vivo permeability, zonulin, molecular permeability and blood markers. Across categories, there is consistency pointing towards increased intestinal permeability in T1D. In animal models of T1D, the intestinal permeability varies with age and strains implying a need for careful selection of method and experimental setup. Furthermore, dietary interventions that affect diabetes incidence in animal models does also impact the intestinal permeability, suggesting an association between increased intestinal permeability and T1D development.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Animales , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Intestino Delgado/inmunología , Intestino Delgado/patología , Permeabilidad
12.
Diabetologia ; 64(8): 1805-1815, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33973017

RESUMEN

AIMS/HYPOTHESIS: The incidence of type 1 diabetes is increasing more rapidly than can be explained by genetic drift. Viruses may play an important role in the disease, as they seem to activate the 2'-5'-linked oligoadenylate (2'-5'A) pathway of the innate antiviral immune system. Our aim was to investigate this possibility. METHODS: Innate antiviral immune pathways were searched for type 1 diabetes-associated polymorphisms using genome-wide association study data. SNPs within ±250kb flanking regions of the transcription start site of 64 genes were examined. These pathways were also investigated for type 1 diabetes-associated RNA expression profiles using laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection (DiViD) study and the network of Pancreatic Organ Donors (nPOD). RESULTS: We found 27 novel SNPs in genes nominally associated with type 1 diabetes. Three of those SNPs were located upstream of the 2'-5'A pathway, namely SNP rs4767000 (p = 1.03 × 10-9, OR 1.123), rs1034687 (p = 2.16 × 10-7, OR 0.869) and rs739744 (p = 1.03 × 10-9, OR 1.123). We also identified a large group of dysregulated islet genes in relation to type 1 diabetes, of which two were novel. The most aberrant genes were a group of IFN-stimulated genes. Of those, the following distinct pathways were targeted by the dysregulation (compared with the non-diabetic control group): OAS1 increased by 111% (p < 1.00 × 10-4, 95% CI -0.43, -0.15); MX1 increased by 142% (p < 1.00 × 10-4, 95% CI -0.52, -0.22); and ISG15 increased by 197% (p = 2.00 × 10-4, 95% CI -0.68, -0.18). CONCLUSIONS/INTERPRETATION: We identified a genetic predisposition in the 2'-5'A pathway that potentially contributes to dysregulation of the innate antiviral immune system in type 1 diabetes. This study describes a potential role for the 2'-5'A pathway and other components of the innate antiviral immune system in beta cell autoimmunity.


Asunto(s)
Nucleótidos de Adenina/genética , Diabetes Mellitus Tipo 1/genética , Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Oligorribonucleótidos/genética , Polimorfismo de Nucleótido Simple/genética , Virosis/inmunología , Adulto , Antivirales/uso terapéutico , Diabetes Mellitus Tipo 1/virología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Virosis/tratamiento farmacológico , Adulto Joven
14.
PPAR Res ; 2020: 6198628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395123

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.

15.
Diabetologia ; 62(12): 2262-2272, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31410530

RESUMEN

AIMS/HYPOTHESIS: Sphingolipid metabolism regulates beta cell biology and inflammation and is abnormal at the onset of type 1 diabetes. Fenofibrate, a regulator of sphingolipid metabolism, is known to prevent diabetes in NOD mice. Here, we aimed to investigate the effects of fenofibrate on the pancreatic lipidome, pancreas morphology, pancreatic sympathetic nerves and blood glucose homeostasis in NOD mice. METHODS: We treated female NOD mice with fenofibrate from 3 weeks of age. The pancreatic lipidome was analysed using MS. Analysis of pancreas and islet volume was performed by stereology. Islet sympathetic nerve fibre volume was evaluated using tyrosine hydroxylase staining. The effect on blood glucose homeostasis was assessed by measuring non-fasting blood glucose from age 12 to 30 weeks. Furthermore, we measured glucose tolerance, fasting insulin and glucagon levels, and insulin tolerance. RESULTS: We found that fenofibrate selectively increases the amount of very-long-chain sphingolipids in the pancreas of NOD mice. In addition, we found that fenofibrate causes a remodelling of the pancreatic lipidome with an increased amount of lysoglycerophospholipids. Fenofibrate did not affect islet or pancreas volume, but led to a higher volume of islet sympathetic nerve fibres and tyrosine hydroxylase-positive cells. Fenofibrate-treated NOD mice had a more stable blood glucose, which was associated with reduced non-fasting and increased fasting blood glucose. Furthermore, fenofibrate improved glucose tolerance, reduced fasting glucagon levels and prevented fasting hyperinsulinaemia. CONCLUSIONS/INTERPRETATION: These data indicate that fenofibrate alters the pancreatic lipidome to a more anti-inflammatory and anti-apoptotic state. The beneficial effects on islet sympathetic nerve fibres and blood glucose homeostasis indicate that fenofibrate could be used as a therapeutic approach to improve blood glucose homeostasis and prevent diabetes-associated pathologies.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Fenofibrato/farmacología , Homeostasis/efectos de los fármacos , Hipolipemiantes/farmacología , Páncreas/efectos de los fármacos , Esfingolípidos/metabolismo , Animales , Diabetes Mellitus Tipo 1/sangre , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Páncreas/metabolismo , Esfingolípidos/sangre
16.
Nutrients ; 10(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428550

RESUMEN

Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.


Asunto(s)
Diabetes Mellitus/prevención & control , Dieta Sin Gluten , Fenómenos Fisiologicos de la Nutrición Prenatal , Animales , Femenino , Humanos , Embarazo
18.
PLoS One ; 13(3): e0194414, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29543915

RESUMEN

Sphingolipids are a diverse group of lipids with important roles in beta-cell biology regulating insulin folding and controlling apoptosis. Sphingolipid biosynthesis begins with the condensation of L-serine and palmitoyl-CoA. Here we tested the effect of L-serine supplementation on autoimmune diabetes development and blood glucose homeostasis in female NOD mice. We found that continuous supplementation of L-serine reduces diabetes incidence and insulitis score. In addition, L-serine treated mice had an improved glucose tolerance test, reduced HOMA-IR, and reduced blood glucose levels. L-serine led to a small reduction in body weight accompanied by reduced food and water intake. L-serine had no effect on pancreatic sphingolipids as measured by mass spectrometry. The data thus suggests that L-serine could be used as a therapeutic supplement in the treatment of Type 1 Diabetes and to improve blood glucose homeostasis.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Homeostasis/efectos de los fármacos , Serina/farmacología , Animales , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/epidemiología , Suplementos Dietéticos , Femenino , Prueba de Tolerancia a la Glucosa , Incidencia , Insulina/sangre , Ratones Endogámicos NOD , Serina/administración & dosificación
19.
Diabetes Metab Res Rev ; 34(4): e2987, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29392873

RESUMEN

BACKGROUND: Gluten-free (GF) diet during pregnancy ameliorates autoimmune diabetes in nonobese diabetic (NOD) mouse offspring. Due to comorbidity of celiac disease in type 1 diabetes, we hypothesized that GF diet in utero alleviates the humoral and histopathological signs of celiac disease in NOD mice. We aimed to establish the mechanisms behind the diabetes-protective effect of GF diet in utero. METHODS: Breeding pairs of NOD mice were fed a GF or gluten-containing standard (STD) diet until parturition. The offspring were nursed by mothers on STD diet and continued on this diet until ages 4 and 13 weeks. Analyses of serum antitissue transglutaminase (anti-tTG) intestine and islet histology, islet transglutaminase (TG) activity, and cytokine expression in T cells from lymphoid organs were performed. RESULTS: GF versus STD diet in utero led to reduced serum anti-tTG titre and increased villus-to-crypt ratio at both ages. Insulitis along with systemic and local inflammation were decreased, but islet TG activity was unchanged in 13-week-old GF mice. These mice had unchanged beta-cell volumes, but increased islet numbers throughout the prediabetic period. CONCLUSIONS: Collectively, GF diet administered during pregnancy improves signs of celiac disease and autoimmune diabetes in the offspring. The diabetes-ameliorative effect of GF diet in utero is followed by dampening of inflammation, unchanged beta-cell volume, but increased islet numbers.


Asunto(s)
Biomarcadores/análisis , Enfermedad Celíaca/dietoterapia , Diabetes Mellitus Experimental/dietoterapia , Dieta Sin Gluten , Células Secretoras de Insulina/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos NOD , Embarazo , Pronóstico
20.
PLoS One ; 12(7): e0181143, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700675

RESUMEN

Intranasal administration of gliadin prevents autoimmune diabetes in non-obese diabetic mice. The current study was designed to investigate if bakers are intranasally exposed to gluten during work and whether occupation as baker is inversely associated with type 1 diabetes. Gliadin was measured in nasal swabs from eight bakers and butchers. The odds ratio of type 1 diabetes in selected profession groups was analysed in a registry-based case-control study with data from 1980 to 2010 derived from Statistics Denmark. The cohort included 1,210,017 Danish individuals, thereof 15,451 with type 1 diabetes (1.28%). Average nasal gliadin swab content after full working days was 6.3 µg (confidence interval (CI): 2.8 to 9.7) among bakers, while no nasal gliadin was detected among butchers. The odds ratio of type 1 diabetes was lower among bakers (OR = 0.57; CI: 0.52 to 0.62) and agriculture workers occupied with production of grains (OR = 0.65; CI: 0.56 to 0.75). Bakers had a lower odds ratio of type 1 diabetes, which potentially could be attributed to exposure of nasal mucosal gluten during work, as observed in this study. If other studies confirm the present observations, intranasal gliadin administration could possibly be an easy and safe approach for the prevention of type 1 diabetes in high-risk individuals or prediabetic subjects.


Asunto(s)
Diabetes Mellitus Tipo 1/epidemiología , Grano Comestible/química , Gliadina/análisis , Estudios de Casos y Controles , Productos Agrícolas , Glútenes , Humanos , Mucosa Nasal/metabolismo , Ocupaciones , Oportunidad Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA