Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725357

RESUMEN

BACKGROUND AND PURPOSE: The dopamine D2 receptor is expressed as a short (D2S) and a long (D2L) isoform with 29 additional amino acids in the third intracellular loop. The D2S isoform shows higher presynaptic expression than the D2L isoform, and decreased D2S expression has recently been linked to an increased risk for schizophrenia. Here, we present the first investigation, at receptor isoform level, of kinetic differences in the G protein activation profiles of the D2S, compared with the D2L isoform. EXPERIMENTAL APPROACH: We employed a NanoBRET-based approach to G protein dissociation to interrogate the time-resolved coupling profile of 3×HA-tagged D2L and D2S to Gαi/o/z proteins in vitro. KEY RESULTS: Using dopamine as a D2 receptor agonist, we observed a more pronounced activation of Gαo and Gαz than Gαi proteins by D2L compared with D2S. This differentiation was not observed for D2S, which activated Gαo and Gαz with lower efficacy than D2L. These signalling differences were preserved on second messenger level and were not due to differences in receptor expression. Expanding to a set of seven full and partial D2 receptor agonists showed these effects were not restricted to dopamine but rather a mutual, receptor-associated property. Contrasting this trend, we found that D2S activated G proteins faster than D2L upon full receptor activation. CONCLUSION AND IMPLICATIONS: The findings highlight that both D2L and D2S are mechanistically able to activate all non-visual Gαi/o proteins. Thereby, they add to previous reports about isoform-specificity to certain Gαi/o proteins observed in specific cell types.

2.
Crit Rev Clin Lab Sci ; : 1-30, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497103

RESUMEN

Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.

3.
Nat Commun ; 14(1): 6243, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813859

RESUMEN

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Humanos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/efectos adversos , Transducción de Señal
4.
J Clin Endocrinol Metab ; 108(11): 2821-2833, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37235780

RESUMEN

CONTEXT: Lost glucagon-like peptide 1 receptor (GLP-1R) function affects human physiology. OBJECTIVE: This work aimed to identify coding nonsynonymous GLP1R variants in Danish individuals to link their in vitro phenotypes and clinical phenotypic associations. METHODS: We sequenced GLP1R in 8642 Danish individuals with type 2 diabetes or normal glucose tolerance and examined the ability of nonsynonymous variants to bind GLP-1 and to signal in transfected cells via cyclic adenosine monophosphate (cAMP) formation and ß-arrestin recruitment. We performed a cross-sectional study between the burden of loss-of-signaling (LoS) variants and cardiometabolic phenotypes in 2930 patients with type 2 diabetes and 5712 participants in a population-based cohort. Furthermore, we studied the association between cardiometabolic phenotypes and the burden of the LoS variants and 60 partly overlapping predicted loss-of-function (pLoF) GLP1R variants found in 330 566 unrelated White exome-sequenced participants in the UK Biobank cohort. RESULTS: We identified 36 nonsynonymous variants in GLP1R, of which 10 had a statistically significant loss in GLP-1-induced cAMP signaling compared to wild-type. However, no association was observed between the LoS variants and type 2 diabetes, although LoS variant carriers had a minor increased fasting plasma glucose level. Moreover, pLoF variants from the UK Biobank also did not reveal substantial cardiometabolic associations, despite a small effect on glycated hemoglobin A1c. CONCLUSION: Since no homozygous LoS nor pLoF variants were identified and heterozygous carriers had similar cardiometabolic phenotype as noncarriers, we conclude that GLP-1R may be of particular importance in human physiology, due to a potential evolutionary intolerance of harmful homozygous GLP1R variants.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Estudios Transversales , Péptido 1 Similar al Glucagón/metabolismo , Fenotipo
6.
Schizophr Res ; 246: 268-276, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35858504

RESUMEN

BACKGROUND: Many patients with schizophrenia experience psychiatric symptoms long before being diagnosed. We investigated patterns of pre-diagnostic psychopharmacological treatment in individuals diagnosed with first-episode schizophrenia during the last two decades. DESIGN: Using Danish nationwide healthcare registers, we identified all individuals aged ≥10 years registered with their first ICD-10 schizophrenia diagnosis between January 1999 and March 2019. For each calendar year from 1999 to 2019, we calculated the proportion of patients - among those having received their first schizophrenia diagnosis in the respective calendar year - who redeemed prescriptions for various psychotropics in the two years preceding the schizophrenia diagnosis. We calculated proportions of all pre-diagnostic prescriptions since 1995 for a sub-population diagnosed 2011-2019 and for an age- and sex-matched reference group without schizophrenia. RESULTS: Among 33,361 individuals with schizophrenia (58 % males), the schizophrenia incidence rate was stable during the study period but the mean age at diagnosis decreased by >10 years. In the two pre-diagnostic years, 69 % received psychopharmacological treatment (52 % antipsychotics, 40 % antidepressants). This was stable between 1999 and 2019. Among 14,425 individuals diagnosed 2011-2019, psychotropic drug use was observed among 14-20 % between 24 and 10 years before the diagnosis, being four times higher than the reference group. Particularly antipsychotic and antidepressant drug use increased steadily during the ten pre-diagnostic years. CONCLUSIONS: Pre-diagnostic psychotropic drug use in schizophrenia was frequent but stable between 1999 and 2019 despite an earlier identification of schizophrenia patients. Our findings emphasize the continued importance of thorough diagnostic interviews, particularly among patients in need of antipsychotic treatment.


Asunto(s)
Antipsicóticos , Esquizofrenia , Antidepresivos/uso terapéutico , Antipsicóticos/uso terapéutico , Dinamarca/epidemiología , Femenino , Humanos , Masculino , Psicotrópicos/uso terapéutico , Esquizofrenia/diagnóstico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/epidemiología
7.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302493

RESUMEN

The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and ßarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.


Asunto(s)
Técnicas Biosensibles , Proteínas de Unión al GTP , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
8.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302494

RESUMEN

Two-thirds of human hormones and one-third of clinical drugs act on membrane receptors that couple to G proteins to achieve appropriate functional responses. While G protein transducers from literature are annotated in the Guide to Pharmacology database, two recent large-scale datasets now expand the receptor-G protein 'couplome'. However, these three datasets differ in scope and reported G protein couplings giving different coverage and conclusions on G protein-coupled receptor (GPCR)-G protein signaling. Here, we report a common coupling map uncovering novel couplings supported by both large-scale studies, the selectivity/promiscuity of GPCRs and G proteins, and how the co-coupling and co-expression of G proteins compare to the families from phylogenetic relationships. The coupling map and insights on GPCR-G protein selectivity will catalyze advances in receptor research and cellular signaling toward the exploitation of G protein signaling bias in design of safer drugs.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
9.
Cell Chem Biol ; 29(2): 226-238.e4, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34302750

RESUMEN

G-protein-coupled receptors (GPCRs) represent the largest family of drug targets. Upon activation, GPCRs signal primarily via a diverse set of heterotrimeric G proteins. Most GPCRs can couple to several different G protein subtypes. However, how drugs act at GPCRs contributing to the selectivity of G protein recognition is poorly understood. Here, we examined the G protein selectivity profile of the dopamine D2 receptor (D2), a GPCR targeted by antipsychotic drugs. We show that D2 discriminates between six individual members of the Gi/o family, and its profile of functional selectivity is remarkably different across its ligands, which all engaged D2 with a distinct G protein coupling pattern. Using structural modeling, receptor mutagenesis, and pharmacological evaluation, we identified residues in the D2 binding pocket that shape these ligand-directed biases. We further provide pharmacogenomic evidence that natural variants in D2 differentially affect its G protein biases in response to different ligands.


Asunto(s)
Antipsicóticos/farmacología , Haloperidol/farmacología , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Células HEK293 , Haloperidol/química , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Transducción de Señal/efectos de los fármacos
10.
Nucleic Acids Res ; 50(D1): D518-D525, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34570219

RESUMEN

Two-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine. The G protein database is accessible at https://gproteindb.org.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Unión al GTP/metabolismo , Medicamentos bajo Prescripción/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Células Eucariotas/citología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Anotación de Secuencia Molecular , Mutación , Medicamentos bajo Prescripción/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
11.
J Biol Chem ; 298(2): 101413, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801547

RESUMEN

Naturally occurring missense variants of G protein-coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein-coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of ß-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and ß-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.


Asunto(s)
Receptores de Glucagón , Animales , Glucagón/metabolismo , Humanos , Mutación Missense , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/química , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Transducción de Señal , Arrestina beta 2/metabolismo
12.
Nat Struct Mol Biol ; 28(11): 875-878, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759374

RESUMEN

We present an online, interactive platform for comparative analysis of all available G-protein coupled receptor (GPCR) structures while correlating to functional data. The comprehensive platform encompasses structure similarity, secondary structure, protein backbone packing and movement, residue-residue contact networks, amino acid properties and prospective design of experimental mutagenesis studies. This lets any researcher tap the potential of sophisticated structural analyses enabling a plethora of basic and applied receptor research studies.


Asunto(s)
Bases de Datos de Proteínas , Estructura Secundaria de Proteína/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Internet
13.
Nat Struct Mol Biol ; 28(11): 879-888, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759375

RESUMEN

Two-thirds of human hormones and one-third of clinical drugs activate ~350 G-protein-coupled receptors (GPCR) belonging to four classes: A, B1, C and F. Whereas a model of activation has been described for class A, very little is known about the activation of the other classes, which differ by being activated by endogenous ligands bound mainly or entirely extracellularly. Here we show that, although they use the same structural scaffold and share several 'helix macroswitches', the GPCR classes differ in their 'residue microswitch' positions and contacts. We present molecular mechanistic maps of activation for each GPCR class and methods for contact analysis applicable for any functional determinants. This provides a superfamily residue-level rationale for conformational selection and allosteric communication by ligands and G proteins, laying the foundation for receptor-function studies and drugs with the desired modality.


Asunto(s)
Activación Enzimática/fisiología , Conformación Proteica , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Biología Computacional , Bases de Datos de Proteínas , Humanos , Transducción de Señal/fisiología
14.
Front Cell Dev Biol ; 9: 749607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760890

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are involved in multiple physiological systems related to glucose metabolism, bone homeostasis and fat deposition. Recent research has surprisingly indicated that both agonists and antagonists of GIPR may be useful in the treatment of obesity and type 2 diabetes, as both result in weight loss when combined with GLP-1 receptor activation. To understand the receptor signaling related with weight loss, we examined the pharmacological properties of two rare missense GIPR variants, R190Q (rs139215588) and E288G (rs143430880) linked to lower body mass index (BMI) in carriers. At the molecular and cellular level, both variants displayed reduced G protein coupling, impaired arrestin recruitment and internalization, despite maintained high GIP affinity. The physiological phenotyping revealed an overall impaired bone strength, increased systolic blood pressure, altered lipid profile, altered fat distribution combined with increased body impedance in human carriers, thereby substantiating the role of GIP in these physiological processes.

15.
Front Med (Lausanne) ; 8: 733080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589504

RESUMEN

Purpose: To investigate the trends and progresses in glaucoma research by searching two major clinical trial registries; clinicaltrials.gov, and Australianclinicaltrials.gov.au. Methods: All clinical trials with glaucoma covered by Clinicaltrials.gov, and Australianclinicaltrials.gov.au starting the study before 1 January 2021 were included. Trials evaluating glaucoma treatment were separated from non-treatment trials and divided into three major categories: "laser treatment," "surgical treatment," and "medical treatment." In the category of "medical treatment," new compounds and their individual targets were identified and subcategorized according to treatment strategy; intraocular pressure (IOP)-lowering, neuroprotective or vascular. The phase transition success rates were calculated. Results: One-thousand five hundred and thirty-seven trials were identified. Sixty-three percent (n = 971) evaluated glaucoma treatment, of which medical treatment accounted for the largest proportion (53%). The majority of medical trials evaluated IOP-lowering compounds, while trials with neuroprotective or vascular compounds accounted for only 5 and 3%, respectively. Eighty-eight new compounds were identified. Phase I, II, and III transition success rates were 63, 26, and 47%, respectively. Conclusion: The number of clinical trials in glaucoma research has increased significantly over the last 30 years. Among the most recently evaluated compounds, all three main treatment strategies were represented, but clinical trials in neuroprotection and vascular modalities are still sparse. In addition to traditional medicines, dietary supplements and growth factors are assessed for a potential anti-glaucomatous effect. Phase II and III success rates were below previously reported success rates for all diseases and ophthalmology in general. A stricter phenotyping of patients can improve the success rates in glaucoma and ophthalmological research and gain a better understanding of responders and non-responders.

16.
Front Endocrinol (Lausanne) ; 12: 698511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220721

RESUMEN

Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.


Asunto(s)
Péptidos Similares al Glucagón/genética , Proglucagón/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Conjuntos de Datos como Asunto , Frecuencia de los Genes , Glucagón/química , Glucagón/genética , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/genética , Péptido 2 Similar al Glucagón/química , Péptido 2 Similar al Glucagón/genética , Péptidos Similares al Glucagón/química , Humanos , Modelos Moleculares , Mutación Missense , Pruebas de Farmacogenómica , Proglucagón/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estructura Secundaria de Proteína/genética
17.
Br J Pharmacol ; 177(5): 961-968, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31863461

RESUMEN

The discovery of novel ligands for orphan GPCRs has profoundly affected our understanding of human biology, opening new opportunities for research, and ultimately for therapeutic development. Accordingly, much effort has been directed towards the remaining orphan receptors, yet the rate of GPCR de-orphanisation has slowed in recent years. Here, we briefly review contemporary methodologies of de-orphanisation and then highlight our recent integrated computational and experimental approach for discovery of novel peptide ligands for orphan GPCRs. We identified putative endogenous peptide ligands and found peptide receptor sequence and structural characteristics present in selected orphan receptors. With comprehensive pharmacological screening using three complementary assays, we discovered novel pairings of 17 peptides with five different orphan GPCRs and revealed potential additional ligands for nine peptide GPCRs. These promising findings lay the foundation for future studies on these peptides and receptors to characterise their roles in human physiology and disease.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Secuencia de Aminoácidos , Bioensayo , Humanos , Ligandos
18.
Cell ; 179(4): 895-908.e21, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675498

RESUMEN

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.


Asunto(s)
Genómica , Péptidos/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos/genética , Biología Computacional , Redes Reguladoras de Genes/genética , Genitales/metabolismo , Genitales/patología , Humanos , Ligandos , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/genética
19.
FASEB J ; 33(4): 5005-5017, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30601679

RESUMEN

Despite recent advances in structural definition of GPCR-G protein complexes, the basis of receptor selectivity between G proteins remains unclear. The Gα12 and Gα13 subtypes together form the least studied group of heterotrimeric G proteins. G protein-coupled receptor 35 (GPR35) has been suggested to couple efficiently to Gα13 but weakly to Gα12. Using combinations of cells genome-edited to not express G proteins and bioluminescence resonance energy transfer-based sensors, we confirmed marked selectivity of GPR35 for Gα13. Incorporating Gα12/Gα13 chimeras and individual residue swap mutations into these sensors defined that selectivity between Gα13 and Gα12 was imbued largely by a single leucine-to-isoleucine variation at position G.H5.23. Indeed, leucine could not be substituted by other amino acids in Gα13 without almost complete loss of GPR35 coupling. The critical importance of leucine at G.H5.23 for GPR35-G protein interaction was further demonstrated by introduction of this leucine into Gαq, resulting in the gain of coupling to GPR35. These studies demonstrate that Gα13 is markedly the most effective G protein for interaction with GPR35 and that selection between Gα13 and Gα12 is dictated largely by a single conservative amino acid variation.-Mackenzie, A. E., Quon, T., Lin, L.-C., Hauser, A. S., Jenkins, L., Inoue, A., Tobin, A. B., Gloriam, D. E., Hudson, B. D., Milligan, G. Receptor selectivity between the G proteins Gα12 and Gα13 is defined by a single leucine-to-isoleucine variation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Isoleucina/química , Leucina/química , Línea Celular , Biología Computacional , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Isoleucina/genética , Cinética , Leucina/genética , Mediciones Luminiscentes , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor de Crecimiento Transformador alfa/química , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , beta-Arrestinas/química , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
20.
Cell ; 172(1-2): 41-54.e19, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249361

RESUMEN

Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of µ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients' quality of life, and relieve the economic and societal burden due to variable drug responsiveness. VIDEO ABSTRACT.


Asunto(s)
Farmacogenética/métodos , Variantes Farmacogenómicas , Receptores Acoplados a Proteínas G/genética , Programas Informáticos , Sitios de Unión , Prescripciones de Medicamentos/normas , Células HEK293 , Humanos , Unión Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA