Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 15(6): 1604-1612, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32378881

RESUMEN

Protein-protein interactions (PPIs) play a critical role in fundamental biological processes. Competitive inhibition of these interfaces requires compounds that can access discontinuous binding epitopes along a large, shallow binding surface area. Conformationally defined protein surface mimics present a viable route to target these interactions. However, the development of minimal protein mimics that engage intracellular targets with high affinity remains a major challenge because mimicry of a portion of the binding interface is often associated with the loss of critical binding interactions. Covalent targeting provides an attractive approach to overcome the loss of noncovalent contacts but have the inherent risk of dominating noncovalent contacts and increasing the likelihood of nonselective binding. Here, we report the iterative design of a proteolytically stable α3ß chimeric helix mimic that covalently targets oncogenic Ras G12C as a model system. We explored several electrophiles to optimize preferential alkylation with the desired C12 on Ras. The designed lead peptide modulates nucleotide exchange, inhibits activation of the Ras-mediated signaling cascade, and is selectively toxic toward mutant Ras G12C cancer cells. The relatively high frequency of acquired cysteines as missense mutations in cancer and other diseases suggests that covalent peptides may offer an untapped therapeutic approach for targeting aberrant protein interactions.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Peptidomiméticos/farmacología , Proteínas ras/efectos de los fármacos , Fenómenos Biofísicos , Línea Celular Tumoral , Humanos , Ligandos , Peptidomiméticos/química , Conformación Proteica , Mapas de Interacción de Proteínas , Proteolisis , Transducción de Señal
2.
Nature ; 576(7787): 477-481, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827278

RESUMEN

Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.


Asunto(s)
Membrana Celular/enzimología , Proteína Oncogénica p21(ras)/metabolismo , Pinocitosis , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Bicarbonatos/metabolismo , Carcinogénesis , Línea Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Simportadores de Sodio-Bicarbonato/metabolismo
4.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26814130

RESUMEN

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA
5.
Mol Carcinog ; 54(3): 203-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24115212

RESUMEN

Aggressive dissemination and metastasis of pancreatic ductal adenocarcinoma (PDAC) results in poor prognosis and marked lethality. Rho monomeric G protein levels are increased in pancreatic cancer tissue. As the mechanisms underlying PDAC malignancy are little understood, we investigated the role for cAMP in regulating monomeric G protein regulated invasion and migration of pancreatic cancer cells. Treatment of PDAC cells with cAMP elevating agents that activate adenylyl cyclases, forskolin, protein kinase A (PKA), 6-Bnz-cAMP, or the cyclic nucleotide phosphodiesterase inhibitor cilostamide significantly decreased migration and Matrigel invasion of PDAC cell lines. Inhibition was dose-dependent and not significantly different between forskolin or cilostamide treatment. cAMP elevating drugs not only blocked basal migration, but similarly abrogated transforming-growth factor-ß-directed PDAC cell migration and invasion. The inhibitory effects of cAMP were prevented by the pharmacological blockade of PKA. Drugs that increase cellular cAMP levels decreased levels of active RhoA or RhoC, with a concomitant increase in phosphorylated RhoA. Diminished Rho signaling was correlated with the appearance of thickened cortical actin bands along the perimeter of non-motile forskolin or cilostamide-treated cells. Decreased migration did not reflect alterations in cell growth or programmed cell death. Collectively these data support the notion that increased levels of cAMP specifically hinder PDAC cell motility through F-actin remodeling.


Asunto(s)
Carcinoma Ductal Pancreático/patología , AMP Cíclico/metabolismo , Neoplasias Pancreáticas/patología , 1-Metil-3-Isobutilxantina/farmacología , Amidas/farmacología , Apoptosis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Colforsina/farmacología , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Invasividad Neoplásica , Inhibidores de Fosfodiesterasa/farmacología , Piridinas/farmacología , Quinolonas/farmacología , Vasodilatadores/farmacología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP , Gemcitabina
6.
Cell Cycle ; 13(6): 941-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552806

RESUMEN

Oncogenic mutation or misregulation of small GTPases in the Ras and Rho families can promote unregulated cell cycle progression in cancer. Post-translational modification by prenylation of these GTPases allows them to signal at the cell membrane. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, promote the prenylation and membrane trafficking of multiple Ras and Rho family members, which makes SmgGDS a potentially important regulator of the cell cycle. Surprisingly little is known about how SmgGDS-607 and SmgGDS-558 affect cell cycle-regulatory proteins in cancer, even though SmgGDS is overexpressed in multiple types of cancer. To examine the roles of SmgGDS splice variants in the cell cycle, we compared the effects of the RNAi-mediated depletion of SmgGDS-558 vs. SmgGDS-607 on cell cycle progression and the expression of cyclin D1, p27, and p21 in pancreatic, lung, and breast cancer cell lines. We show for the first time that SmgGDS promotes proliferation of pancreatic cancer cells, and we demonstrate that SmgGDS-558 plays a greater role than SmgGDS-607 in cell cycle progression as well as promoting cyclin D1 and suppressing p27 expression in multiple types of cancer. Silencing both splice variants of SmgGDS in the cancer cell lines produces an alternative signaling profile compared with silencing SmgGDS-558 alone. We also show that loss of both SmgGDS-607 and SmgGDS-558 simultaneously decreases tumorigenesis of NCI-H1703 non-small cell lung carcinoma (NSCLC) xenografts in mice. These findings indicate that SmgGDS promotes cell cycle progression in multiple types of cancer, making SmgGDS a valuable target for cancer therapeutics.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclo Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
7.
J Biol Chem ; 289(10): 6862-6876, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24415755

RESUMEN

Ras family small GTPases localize at the plasma membrane, where they can activate oncogenic signaling pathways. Understanding the mechanisms that promote membrane localization of GTPases will aid development of new therapies to inhibit oncogenic signaling. We previously reported that SmgGDS splice variants promote prenylation and trafficking of GTPases containing a C-terminal polybasic region and demonstrated that SmgGDS-607 interacts with nonprenylated GTPases, whereas SmgGDS-558 interacts with prenylated GTPases in cells. The mechanism that SmgGDS-607 and SmgGDS-558 use to differentiate between prenylated and nonprenylated GTPases has not been characterized. Here, we provide evidence that SmgGDS-607 associates with GTPases through recognition of the last amino acid in the CAAX motif. We show that SmgGDS-607 forms more stable complexes in cells with nonprenylated GTPases that will become geranylgeranylated than with nonprenylated GTPases that will become farnesylated. These binding relationships similarly occur with nonprenylated SAAX mutants. Intriguingly, farnesyltransferase inhibitors increase the binding of WT K-Ras to SmgGDS-607, indicating that the pharmacological shunting of K-Ras into the geranylgeranylation pathway promotes K-Ras association with SmgGDS-607. Using recombinant proteins and prenylated peptides corresponding to the C-terminal sequences of K-Ras and Rap1B, we found that both SmgGDS-607 and SmgGDS-558 directly bind the GTPase C-terminal region, but the specificity of the SmgGDS splice variants for prenylated versus nonprenylated GTPases is diminished in vitro. Finally, we present structural homology models and data from functional prediction software to define both similar and unique features of SmgGDS-607 when compared with SmgGDS-558.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Unión al GTP Monoméricas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Modelos Químicos , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/genética , Prenilación , Análisis de Secuencia de Proteína/métodos , Programas Informáticos
8.
Mol Cancer Res ; 12(1): 130-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24197117

RESUMEN

UNLABELLED: Breast cancer malignancy is promoted by the small GTPases RhoA and RhoC. SmgGDS is a guanine nucleotide exchange factor that activates RhoA and RhoC in vitro. We previously reported that two splice variants of SmgGDS, SmgGDS-607, and SmgGDS-558, have different characteristics in binding and transport of small GTPases. To define the role of SmgGDS in breast cancer, we tested the expression of SmgGDS in breast tumors, and the role of each splice variant in proliferation, tumor growth, Rho activation, and NF-κB transcriptional activity in breast cancer cells. We show upregulated SmgGDS protein expression in breast cancer samples compared with normal breast tissue. In addition, Kaplan-Meier survival curves indicated that patients with high SmgGDS expression in their tumors had worse clinical outcomes. Knockdown of SmgGDS-558, but not SmgGDS-607, in breast cancer cells decreased proliferation, in vivo tumor growth, and RhoA activity. Furthermore, we found that SmgGDS promoted a Rho-dependent activation of the transcription factor NF-κB, which provides a potential mechanism to define how SmgGDS-mediated activation of RhoA promotes breast cancer. This study demonstrates that elevated SmgGDS expression in breast tumors correlates with poor survival, and that SmgGDS-558 plays a functional role in breast cancer malignancy. Taken together, these findings define SmgGDS-558 as a unique promoter of RhoA and NF-κB activity and a novel therapeutic target in breast cancer. IMPLICATIONS: This study defines a new mechanism to regulate the activities of RhoA and NF-κB in breast cancer cells, and identifies SmgGDS-558 as a novel promoter of breast cancer malignancy.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Factores de Intercambio de Guanina Nucleótido/genética , FN-kappa B/genética , Proteína de Unión al GTP rhoA/genética , Animales , Neoplasias de la Mama/mortalidad , Carcinoma Intraductal no Infiltrante/mortalidad , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Ratones , Ratones SCID , Trasplante de Neoplasias , Pronóstico , Unión Proteica/genética , Isoformas de Proteínas/genética , Transporte de Proteínas/genética , Interferencia de ARN , Empalme del ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño , Transducción de Señal/genética , Transcripción Genética , Trasplante Heterólogo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP
9.
Sci Signal ; 6(277): ra39, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23716716

RESUMEN

During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.


Asunto(s)
Adenosina/metabolismo , Movimiento Celular/fisiología , Modelos Biológicos , Metástasis de la Neoplasia/fisiopatología , Transducción de Señal/fisiología , Microambiente Tumoral , Proteínas de Unión al GTP rap/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Confocal , Datos de Secuencia Molecular , Prenilación , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2B/metabolismo , Proteínas de Unión al GTP rap/genética
10.
Cancer Biol Ther ; 13(8): 647-56, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22549160

RESUMEN

The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G 1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11-7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Neoplasias Pulmonares/metabolismo , FN-kappa B/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Aminoquinolinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Silenciador del Gen , Humanos , Neoplasias Pulmonares/genética , FN-kappa B/antagonistas & inhibidores , Nitrilos/farmacología , Pirimidinas/farmacología , Sulfonas/farmacología , Transcripción Genética/efectos de los fármacos , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética
11.
Cancer Biol Ther ; 12(8): 707-17, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21799303

RESUMEN

Mito-CP11, a mitochondria-targeted nitroxide formed by conjugating a triphenylphosphonium cation to a five-membered nitroxide, carboxy-proxyl (CP), has been used as a superoxide dismutase (SOD) mimetic. In this study, we investigated the antiproliferative and cytotoxic properties of submicromolar levels of Mito-CP11 alone and in combination with fluvastatin, a well known cholesterol lowering drug, in breast cancer cells. Mito-CP11, but not CP or CP plus the cationic ligand, methyl triphenylphosphonium (Me-TPP+), inhibited MCF-7 breast cancer cell proliferation. Mito-CP11 had only minimal effect on MCF-10A, non-tumorigenic mammary epithelial cells. Mito-CP11, however, significantly enhanced fluvastatin-mediated cytotoxicity in MCF-7 cells. Mito-CP11 alone and in combination with fluvastatin inhibited nuclear factor kappa-B activity mainly in MCF-7 cells. We conclude that mitochondria-targeted nitroxide antioxidant molecules (such as Mito-CP11) that are non-toxic to non-tumorigenic cells could enhance the cytostatic and cytotoxic effects of statins in breast cancer cells. This strategy of combining mitochondria-targeted non-toxic molecules with cytotoxic chemotherapeutic drugs may be successfully used to enhance the efficacy of antitumor therapies in breast cancer treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ácidos Grasos Monoinsaturados/farmacología , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Óxidos de Nitrógeno/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/química , Antioxidantes/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Ácidos Grasos Monoinsaturados/administración & dosificación , Femenino , Fluvastatina , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Indoles/administración & dosificación , Ácido Mevalónico/administración & dosificación , Ácido Mevalónico/farmacología , Mitocondrias/metabolismo , Mitocondrias/patología , Óxidos de Nitrógeno/administración & dosificación , Óxidos de Nitrógeno/química , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Especies Reactivas de Oxígeno/metabolismo
12.
Biochemistry ; 48(18): 3838-46, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19290655

RESUMEN

The active site residue Thr-201 in toluene 4-monooxygenase hydroxylase (T4moH) has a structural counterpart in the active sites of all diiron monooxygenases. Thus, our previous finding that mutation of this residue to Ala, Gly, or Ser had no impact on steady-state catalysis or coupling was surprising. In this work, we provide kinetic, biochemical, and structural evidence that one role of Thr-201 may be to stabilize a peroxo-level intermediate during enzyme catalysis. During reactions in the absence of substrate, T201 T4moH slowly consumed O(2) but only a negligible amount of H(2)O(2) was released. In contrast, T201A T4moH gave stoichometric release of H(2)O(2) during reaction in the absence of substrate. Both enzyme isoforms were tightly coupled during steady-state catalysis with saturating toluene and other optimal substrates and exhibited near-identical kinetic parameters. However, rapid mix single-turnover studies showed that T201A T4moH had a faster first-order rate constant for product formation than T201 T4moH did. Comparison of X-ray crystal structures of resting and reduced T201A T4moH in complex with T4moD with comparable structures of T201 T4moHD revealed changes in the positions of several key active site residues relative to the comparable structures of T201 T4moH with T4moD. This combination of catalytic and structural studies offers important new insight into the role of the role of conserved Thr-201, and its contributions to the catalytic reaction cycle.


Asunto(s)
Oxigenasas/metabolismo , Treonina/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Cinética , Modelos Moleculares , Oxígeno/metabolismo , Oxigenasas/química , Solubilidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...