Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(37): eadh4184, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713487

RESUMEN

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.


Asunto(s)
Colorantes , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Modelos Animales de Enfermedad , Densidad de Población
2.
Mol Cancer Ther ; 22(6): 790-804, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921314

RESUMEN

Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 mAbs recognize a single immunodominant epitope. Hence, we removed it by deletion mutagenesis. Cancer-specific, glycosylation-prone mAbs were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art complementarity determining region grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd < 10-12 mol/L, and uncleaved/wtTrop-2 in normal cells with Kd 3.16×10-8 mol/L, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.


Asunto(s)
Inmunoconjugados , Neoplasias de la Próstata , Masculino , Humanos , Antígenos de Neoplasias/genética , Anticuerpos Monoclonales/farmacología
3.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973141

RESUMEN

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Núcleo Celular/metabolismo , Estrés Mecánico , Citoesqueleto de Actina , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Daño del ADN , Ratones Noqueados , Metástasis de la Neoplasia , Neurogénesis , Membrana Nuclear/metabolismo
4.
J Clin Med ; 9(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905780

RESUMEN

Tumor recurrence is now the leading cause of breast cancer-related death. These recurrences are believed to arise from residual cancer stem cells that survive initial therapeutic intervention. Therefore, a comprehensive understanding of cancer stem cell biology is needed to generate more effective therapies. Here we investigate the association between dysregulation of lipid metabolism and breast cancer stem cells. Focusing specifically on lipid droplets, we found that the lipid droplet number correlates with stemness in a panel of breast cell lines. Using a flow cytometry-based method developed for this study, we establish a means to isolate cells with augmented lipid droplet loads from total populations and show that they are enriched in cancer stem cells. Furthermore, pharmacological targeting of fatty acid metabolism reveals a metabolic addiction in a subset of cell lines. Our results highlight a key role for the lipid metabolism in the maintenance of the breast cancer stem cell pool, and as such, suggest it as a potential therapeutic target.

5.
J Clin Invest ; 127(6): 2091-2105, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28504653

RESUMEN

Tumor recurrence is the leading cause of breast cancer-related death. Recurrences are largely driven by cancer cells that survive therapeutic intervention. This poorly understood population is referred to as minimal residual disease. Here, using mouse models that faithfully recapitulate human disease together with organoid cultures, we have demonstrated that residual cells acquire a transcriptionally distinct state from normal epithelium and primary tumors. Gene expression changes and functional characterization revealed altered lipid metabolism and elevated ROS as hallmarks of the cells that survive tumor regression. These residual cells exhibited increased oxidative DNA damage, potentiating the acquisition of somatic mutations during hormonal-induced expansion of the mammary cell population. Inhibition of either cellular fatty acid synthesis or fatty acid transport into mitochondria reduced cellular ROS levels and DNA damage, linking these features to lipid metabolism. Direct perturbation of these hallmarks in vivo, either by scavenging ROS or by halting the cyclic mammary cell population expansion, attenuated tumor recurrence. Finally, these observations were mirrored in transcriptomic and histological signatures of residual cancer cells from neoadjuvant-treated breast cancer patients. These results highlight the potential of lipid metabolism and ROS as therapeutic targets for reducing tumor recurrence in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lapatinib , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Ratones , Recurrencia Local de Neoplasia/prevención & control , Neoplasia Residual , Estrés Oxidativo , Progesterona/farmacología , Quinazolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Curr Gene Ther ; 14(3): 161-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24828254

RESUMEN

BACKGROUND: DNA vaccines provide high tolerability and safety but commonly suffer from suboptimal immunogenicity. We previously reported that a plasmid vector (pATRex), encoding the DNA sequence for the von Willebrand I/A domain of the tumor endothelial marker-8 (TEM8) when given in combination with plasmid-encoded tumor antigens acted as a powerful molecular adjuvant enhancing immunity against breast and melanoma tumors. AIMS: In the present study we addressed two unsolved issues; would the adjuvant action of pATRex extend to a DNA vaccine against infectious disease and, if so, what is the mechanistic basis for pATRex adjuvant action? RESULTS: Here we show in a murine malaria vaccine model that co-administration of pATRex potentiates antibody production elicited by an intramuscular injection of plasmid encoding Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5). pATRex enhanced the B-cell response and induced increased IgG1 production consistent with TH2 polarization of the DNA vaccine response. To explore the mechanism of adjuvant action, cells were transfected in vitro with pATRex and this resulted in formation of insoluble intracellular aggregates and apoptotic cell death. Using a structural modeling approach we identified a short peptide sequence (α3-ß4) within ATRex responsible for protein aggregation and confirmed that transfection of cells with plasmid encoding this self-assembling peptide similarly triggered intracellular aggregates, caspase activation and cell death. CONCLUSION: Plasmids encoding aggregation-promoting domains induce formation of insoluble intracellular aggregates that trigger caspase activation and apoptotic cell death leading to activation of the innate immune system thereby acting as genetic adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/genética , Vacunas contra la Malaria/inmunología , Plásmidos/genética , Vacunas de ADN/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Malaria/terapia , Ratones , Ratones Endogámicos BALB C , Plasmodium yoelii , Agregado de Proteínas/genética , Agregado de Proteínas/inmunología
7.
Mol Cell Biol ; 29(15): 4057-66, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19470759

RESUMEN

Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region that spans bp -600 to -1800 relative to the transcriptional start site. Across this region, there is a loss of canonical nucleosomes and a reduction in histone DNA cross-linking, as monitored by chromatin immunoprecipitation. The ATPase Snf2 is required for these alterations, but the histone acetyltransferase Gcn5 is not. This suggests that the SWI/SNF complex is directly involved in nucleosome removal at HO. We also present evidence indicating that the histone chaperone Asf1 assists in this. These observations suggest that SWI/SNF-related complexes in concert with histone chaperones act to remove histone octamers from DNA during the course of gene regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Regulación Fúngica de la Expresión Génica , Chaperonas Moleculares/genética , Mutación , Nucleosomas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...