Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482358

RESUMEN

In the intricate environment of a cell, many studies seek to discover the location of specific events or objects of interest. Advances in microscopy in recent years have allowed for high detail views of specific areas of cells of interest using correlative light electron microscopy (CLEM). While this powerful technique allows for the correlation of a specific area of fluorescence on a confocal microscope with that same area in an electron microscope, it is most often used to study tagged proteins of interest. This method adapts the correlative method for use with antibody labelling. We have shown that some cellular structures are more sensitive than others to this process and that this can be a useful technique for laboratories where tagged proteins or viruses, or dedicated CLEM instruments are not available.

2.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421168

RESUMEN

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Asunto(s)
Condensados Biomoleculares , Virus Sincitial Respiratorio Humano , Humanos , Animales , Bovinos , Línea Celular , Hibridación Fluorescente in Situ , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribosomas/metabolismo , Replicación Viral
3.
Methods Mol Biol ; 2503: 51-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35575885

RESUMEN

The confocal laser scanning microscope allows us to examine tissue sections in greater detail than a widefield fluorescence microscope. However, this requires samples to be better preserved than standard cryostat sections, which are not usually aldehyde-fixed. Thick sections (approximately 70 µm) of formaldehyde-fixed tissue can be cut using a vibrating microtome and subsequently labeled with primary and secondary fluorescent antibodies and/or fluorescent stains. When imaged in the confocal microscope, these samples allow us to collect high-resolution images, detailing the intracellular location of multiple proteins and structures. In this chapter, we describe the technique used to prepare vibrating microtome sections, using porcine tissue infected with African swine fever virus as an example. This technique can easily be applied to any animal tissue with any suitable combination of antibodies, depending on the hypothesis.


Asunto(s)
Virus de la Fiebre Porcina Africana , Animales , Técnica del Anticuerpo Fluorescente , Formaldehído , Microscopía Confocal/métodos , Microtomía , Porcinos
4.
J Virol ; 96(6): e0202421, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138130

RESUMEN

To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.


Asunto(s)
Infecciones por Birnaviridae , Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Compartimentos de Replicación Viral , Replicación Viral , Animales , Birnaviridae/fisiología , Línea Celular , Pollos/genética , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Microscopía Electrónica , ARN Viral/genética , Proteínas Estructurales Virales/metabolismo , Virión/metabolismo
5.
Viruses ; 13(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960809

RESUMEN

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Asunto(s)
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , ARN Viral/biosíntesis , Animales , Línea Celular , Coronavirus/clasificación , Coronavirus/crecimiento & desarrollo , Citoplasma/metabolismo , Humanos , Virus de la Bronquitis Infecciosa/crecimiento & desarrollo , Virus de la Bronquitis Infecciosa/metabolismo , ARN Bicatenario/metabolismo , Compartimentos de Replicación Viral/metabolismo
6.
Life (Basel) ; 11(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920339

RESUMEN

The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.

7.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33568514

RESUMEN

Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs.IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate.


Asunto(s)
Insectos Vectores , Dermatosis Nodular Contagiosa/transmisión , Virus de la Dermatosis Nodular Contagiosa/fisiología , Animales , Bovinos , Insectos Vectores/fisiología , Insectos Vectores/virología , Masculino , Replicación Viral
8.
Viruses ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429879

RESUMEN

African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Replicación Viral , Virus de la Fiebre Porcina Africana/ultraestructura , Animales , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Porcinos , Células Vero , Ensamble de Virus
9.
Nanotechnology ; 32(9): 095502, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33242844

RESUMEN

We have developed a low-cost molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify myoglobin in a biological sample. The assay uses a previously unreported method for the development of microwave-assisted rapid synthesis of aldehyde functionalized magnetic nanoparticles, in just 20 min. The aldehyde functionalized nanoparticles have an average size of 7.5 nm ± 1.8 and saturation magnetizations of 31.8 emu g-1 with near-closed magnetization loops, confirming their superparamagnetic properties. We have subsequently shown that protein tethering was possible to the aldehyde particles, with 0.25 ± 0.013 mg of myoglobin adsorbed to 20 mg of the nanomaterial. Myoglobin-specific fluorescently tagged MIP (F-MIP) particles were synthesized and used within the assay to capture myoglobin from a test sample. Excess F-MIP was removed from the sample using protein functionalized magnetic nanoparticles (Mb-SPION), with the remaining sample analyzed using fluorescence spectroscopy. The obtained calibration plot of myoglobin showed a linear correlation ranging from 60 pg ml-1 to 6 mg ml-1 with the limit of detection of 60 pg ml-1. This method was successfully used to detect myoglobin in spiked fetal calf serum, with a recovery rate of more than 93%.


Asunto(s)
Tecnología Química Verde/métodos , Polímeros Impresos Molecularmente/síntesis química , Mioglobina/análisis , Albúmina Sérica Bovina/química , Adsorción , Animales , Humanos , Nanopartículas de Magnetita , Microondas , Impresión Molecular , Polímeros Impresos Molecularmente/química , Mioglobina/química , Espectrometría de Fluorescencia
10.
PLoS Negl Trop Dis ; 14(12): e0008876, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270627

RESUMEN

Aedes aegypti Act4 is a paralog of the Drosophila melanogaster indirect flight muscle actin gene Act88F. Act88F has been shown to be haploinsufficient for flight in both males and females (amorphic mutants are dominant). Whereas Act88F is expressed in indirect flight muscles of both males and females, expression of Act4 is substantially female-specific. We therefore used CRISPR/Cas9 and homology directed repair to examine the phenotype of Act4 mutants in two Culicine mosquitoes, Aedes aegypti and Culex quinquefasciatus. A screen for dominant female-flightless mutants in Cx. quinquefasciatus identified one such mutant associated with a six base pair deletion in the CxAct4 coding region. A similar screen in Ae. aegypti identified no dominant mutants. Disruption of the AeAct4 gene by homology-dependent insertion of a fluorescent protein marker cassette gave a recessive female-flightless phenotype in Ae. aegypti. Reproducing the six-base deletion from Cx. quinquefasciatus in Ae. aegypti using oligo-directed mutagenesis generated dominant female-flightless mutants and identified additional dominant female-flightless mutants with other in-frame insertions or deletions. Our data indicate that loss of function mutations in the AeAct4 gene are recessive but that short in-frame deletions produce dominant-negative versions of the AeAct4 protein that interfere with flight muscle function. This makes Act4 an interesting candidate for genetic control methods, particularly population-suppression gene drives targeting female viability/fertility.


Asunto(s)
Aedes/genética , Culex/genética , Culex/fisiología , Vuelo Animal , Proteínas de Insectos/metabolismo , Control de Mosquitos , Animales , Sistemas CRISPR-Cas , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Mutación
11.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878896

RESUMEN

Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.


Asunto(s)
Inmunidad Innata/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Animales , Antivirales/farmacología , Bovinos , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Cuerpos de Inclusión Viral/metabolismo , FN-kappa B/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Factor de Necrosis Tumoral alfa , Células Vero , Replicación Viral
12.
Methods Mol Biol ; 2203: 263-275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32833218

RESUMEN

Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples, and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.


Asunto(s)
Criopreservación/métodos , Substitución por Congelación/métodos , Microscopía Electrónica de Transmisión/métodos , Animales , Artefactos , Línea Celular , Células Cultivadas , Congelación , Técnicas Histológicas , Humanos , Imagenología Tridimensional/métodos , Microtomía/métodos
13.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321810

RESUMEN

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.


Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus Reordenados/genética , Replicación Viral/genética , Animales , Línea Celular , Coinfección/metabolismo , Citoplasma , Virus ARN/genética , Virus Reordenados/metabolismo , Proteínas Estructurales Virales/genética
14.
Vet Pathol ; 57(3): 388-396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32314676

RESUMEN

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers. This study describes the gross, microscopic, and ultrastructural changes that occur over time in cattle experimentally challenged with LSDV. Four calves were inoculated with wildtype LSDV and monitored for 19 to 21 days. At 7 days after inoculation, 2 of the 4 cattle developed multifocal cutaneous nodules characteristic of LSD. Some lesions displayed a targetoid appearance. Histologically, intercellular and intracellular edema was present in the epidermis of some nodules. Occasional intracytoplasmic inclusion bodies were identified in keratinocytes. More severe and consistent changes were present in the dermis, with marked histiocytic inflammation and necrotizing fibrinoid vasculitis of dermal vessels, particularly the deep dermal plexus. Chronic lesions consisted of full-thickness necrosis of the dermis and epidermis. Lesions in other body organs were not a major feature of LSD in this study, highlighting the strong cutaneous tropism of this virus. Immunohistochemistry and electron microscopy identified LSDV-infected histiocytes and fibroblasts in the skin nodules of affected cattle. This study highlights the noteworthy lesions of LSDV and how they develop over time.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Animales , Asia/epidemiología , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Dermatitis/patología , Dermatitis/veterinaria , Dermatitis/virología , Enfermedades Endémicas/veterinaria , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/patología , Dermatosis Nodular Contagiosa/transmisión , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Virus de la Dermatosis Nodular Contagiosa/ultraestructura , Piel/patología , Piel/virología , Vasculitis/patología , Vasculitis/veterinaria , Vasculitis/virología
15.
Viruses ; 11(11)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694296

RESUMEN

Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.


Asunto(s)
Coronavirus , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/ultraestructura , Orgánulos/ultraestructura , Replicación Viral , Animales , Línea Celular , Coronavirus/fisiología , Coronavirus/ultraestructura , Infecciones por Coronavirus/virología , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno , Membranas Intracelulares/virología , Cinética , Orgánulos/virología , ARN Viral/biosíntesis , Porcinos
16.
Viruses ; 11(10)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547130

RESUMEN

: African swine fever is a devastating hemorrhagic infectious disease, which affects domestic and wild swines (Susscrofa) of all breeds and ages, with a high lethality of up to 90-100% in naïve animals. The causative agent, African swine fever virus (ASFV), is a large and complex double-stranded DNA arbovirus which is currently spreading worldwide, with serious socioeconomic consequences. There is no treatment or effective vaccine commercially available, and most of the current research is focused on attenuated viral models, with limited success so far. Thus, new strategies are under investigation. Extracellular vesicles (EVs) have proven to be a promising new vaccination platform for veterinary diseases in situations in which conventional approaches have not been completely successful. Here, serum extracellular vesicles from infected pigs using two different ASFV viruses (OURT 88/3 and Benin ΔMGF), corresponding to a naturally attenuated virus and a deletion mutant, respectively, were characterized in order to determine possible differences in the content of swine and viral proteins in EV-enriched fractions. Firstly, EVs were characterized by their CD5, CD63, CD81 and CD163 surface expression. Secondly, ASFV proteins were detected on the surface of EVs from ASFV-infected pig serum. Finally, proteomic analysis revealed few specific proteins from ASFV in the EVs, but 942 swine proteins were detected in all EV preparations (negative controls, and OURT 88/3 and Benin ΔMGF-infected preparations). However, in samples from OURT 88/3-infected animals, only a small number of proteins were differentially identified compared to control uninfected animals. Fifty-six swine proteins (Group Benin) and seven proteins (Group OURT 88/3) were differentially detected on EVs when compared to the EV control group. Most of these were related to coagulation cascades. The results presented here could contribute to a better understanding of ASFV pathogenesis and immune/protective responses in the host.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/virología , Vesículas Extracelulares/metabolismo , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/patología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Vesículas Extracelulares/virología , Femenino , Mutación , Proteómica , Sus scrofa , Porcinos , Carga Viral , Proteínas Virales/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-31179277

RESUMEN

Rapid development of antibody-based therapeutics are crucial to the agenda of innovative manufacturing of macromolecular therapies to combat emergent diseases. Although highly specific, antibody therapies are costly to produce. Molecularly imprinted polymers (MIPs) constitute a rapidly-evolving class of antigen-recognition materials that act as synthetic antibodies. We report here on the virus neutralizing capacity of hydrogel-based MIPs. We produced MIPs using porcine reproductive and respiratory syndrome virus (PRRSV-1), as a model mammalian virus. Assays were performed to evaluate the specificity of virus neutralization, the effect of incubation time and MIP concentration. Polyacrylamide and N-hydroxymethylacrylamide based MIPs produced a highly significant reduction in infectious viral titer recovered after treatment, reducing it to the limit of detection of the assay. MIP specificity was tested by comparing their neutralizing effects on PRRSV-1 to the effects on the unrelated bovine viral diarrhea virus-1; no significant cross-reactivity was observed. The MIPs demonstrated effective virus neutralization in just 2.5 min and their effect was concentration dependent. These data support the further evaluation of MIPs as synthetic antibodies as a novel approach to the treatment of viral infection.

18.
Sci Rep ; 8(1): 16956, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446704

RESUMEN

The re-emergence of poxviral zoonotic infections and the threat of bioterrorism emphasise the demand for effective antipoxvirus therapies. Here, we show that carbenoxolone, a pharmacological inhibitor of gap junction function and a compound widely used in cell culture, is capable of hindering the replication of Vaccinia virus, the prototypical poxvirus, in a gap junction-independent manner in a human keratinocyte cell line. Viral protein synthesis occurs in the presence of carbenoxolone but infectious virion formation is minimal, indicating that carbenoxolone blocks viral morphogenesis. Initial viability tests suggested that carbenoxolone was not toxic to cells. However, electron microscopic analysis of carbenoxolone treated cells revealed that it alters the cellular endomembrane system. This widespread ultrastructural damage prevents Vaccinia virus virion assembly. These results strengthen the need for thorough characterisation of the effects of antiviral compounds on the cellular ultrastructure.


Asunto(s)
Carbenoxolona/farmacología , Queratinocitos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antiulcerosos/farmacología , Antivirales/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Membrana Celular/virología , Supervivencia Celular/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/virología , Microscopía Electrónica de Transmisión , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/fisiología , Virión/efectos de los fármacos , Virión/metabolismo
19.
Viruses ; 10(9)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200673

RESUMEN

Positive-strand RNA viruses, such as coronaviruses, induce cellular membrane rearrangements during replication to form replication organelles allowing for efficient viral RNA synthesis. Infectious bronchitis virus (IBV), a pathogenic avian Gammacoronavirus of significant importance to the global poultry industry, has been shown to induce the formation of double membrane vesicles (DMVs), zippered endoplasmic reticulum (zER) and tethered vesicles, known as spherules. These membrane rearrangements are virally induced; however, it remains unclear which viral proteins are responsible. In this study, membrane rearrangements induced when expressing viral non-structural proteins (nsps) from two different strains of IBV were compared. Three non-structural transmembrane proteins, nsp3, nsp4, and nsp6, were expressed in cells singularly or in combination and the effects on cellular membranes investigated using electron microscopy and electron tomography. In contrast to previously studied coronaviruses, IBV nsp4 alone is necessary and sufficient to induce membrane pairing; however, expression of the transmembrane proteins together was not sufficient to fully recapitulate DMVs. This indicates that although nsp4 is able to singularly induce membrane pairing, further viral or host factors are required in order to fully assemble IBV replicative structures. This study highlights further differences in the mechanism of membrane rearrangements between members of the coronavirus family.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/virología , Interacciones Huésped-Patógeno , Virus de la Bronquitis Infecciosa/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Membrana Celular/ultraestructura , Pollos , Fibroblastos/virología , Microscopía Electrónica
20.
Ticks Tick Borne Dis ; 7(4): 631-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26837859

RESUMEN

Canine monocytic ehrlichiosis is caused by Ehrlichia canis, a small gram-negative coccoid bacterium that infects circulating monocytes. The disease is transmitted by the brown dog tick Rhipicephalus sanguineus s.l. and is acknowledged as an important infectious disease of dogs and other members of the family Canidae worldwide. E. canis is routinely cultured in vitro in the canine monocyte-macrophage cell line DH82 and in non-vector Ixodes scapularis tick cell lines, but not in cells derived from its natural vector. Here we report infection and limited propagation of E. canis in the tick cell line RSE8 derived from the vector R. sanguineus s.l., and successful propagation through six passages in a cell line derived from the experimental vector Dermacentor variabilis. In addition, using bacteria semi-purified from I. scapularis cells we attempted to infect a panel of cell lines derived from non-vector species of the tick genera Amblyomma, Dermacentor, Hyalomma, Ixodes and Rhipicephalus with E. canis and, for comparison, the closely-related Ehrlichia ruminantium, causative agent of heartwater in ruminants. Amblyomma and non-vector Dermacentor spp. cell lines appeared refractory to infection with E. canis but supported growth of E. ruminantium, while some, but not all, cell lines derived from Hyalomma, Ixodes and Rhipicephalus spp. ticks supported growth of both pathogens. We also illustrated and compared the ultrastructural morphology of E. canis in DH82, RSE8 and I. scapularis IDE8 cells. This study confirms that E. canis, like E. ruminantium, is able to grow not only in cell lines derived from natural and experimental tick vectors but also in a wide range of other cell lines derived from tick species not known to transmit this pathogen.


Asunto(s)
Ehrlichia canis/crecimiento & desarrollo , Especificidad del Huésped , Ixodidae/microbiología , Animales , Técnicas Bacteriológicas/métodos , Línea Celular , Parasitología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA