Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 121: 106690, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35091124

RESUMEN

Using acoustofluidic channels formed by capillary bridges two models are developed to describe nodes formed by leaky and by evanescent waves. The liquid channel held between a microscope slide (waveguide) and a strip of polystyrene film (fluid guide) avoids solid-sidewall interactions. With this simplification, our experimental and numerical study showed that waves emitted from a single plane surface, interfere and form the nodes without any resonance in the fluid. Both models pay particular attention to tensor elements normal to the solid-liquid interfaces they find that; initially nodes form in the solid and the node pattern is replicated by waves emitted into the fluid from antinodes in the stress. At fluids depths near half an acoustic wavelength, most nodes are formed by leaky waves. In the glass, water-loading reduces node-node separation and forms an overlay type waveguide which aligns the nodes predominantly along the channel. One new practical insight is that node separation can be controlled by water depth. At 0.2 mm water depths (which are smaller than a » wavelength) nodes form from evanescent waves. Here a suspension of yeast cells formed a pattern of small dot-like clumps of cells on the surface of the polystyrene film. We found the same pattern in sound intensity normal, and close, to the water-polystyrene interface. The capillary bridge channel developed for this study is simple, low-cost, and could be developed for filtration, separation, or patterning of biological species in rapid immuno-sensing applications.

2.
Ultrasonics ; 56: 260-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25193111

RESUMEN

Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonances were able to drive particles (yeast cells) in the water to nodes throughout the chamber. Ultrasound enhanced sedimentation was used to demonstrate the efficiency of the system (>99% particle clearance). Sub-wavelength pin protrusions were used for the contacts between the resonant chamber and other elements. The pins provided support and transferred power, replacing glue which is inefficient for power transfer. Filtration energies of ∼4 J/ml of suspension were measured. A calculation of thermal convection indicates that the circulation could disrupt cell alignment in ducts >35 mm high when a 1K temperature gradient is present; we predict higher efficiencies when this maximum height is observed. For the acoustic design, although modelling was minimal before construction, the very simple construction allowed us to form 3D models of the nodal patterns in the fluid and the duct structure. The models were compared with visual observations of particle movement, Chladni figures and scanning laser vibrometer mapping. This demonstrates that nodal planes in the fluid can be controlled by the position of clamping points and that the contacts could be positioned to increase the efficiency and reliability of particle manipulations in standing waves.


Asunto(s)
Filtración , Ultrasonido , Acústica , Calor , Modelos Biológicos , Temperatura , Vibración , Levaduras/citología
3.
Lab Chip ; 13(4): 610-27, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23291740

RESUMEN

One important niche for multi-wavelength resonators is the filtration of suspensions containing very high particle concentration. For some applications, multi-wavelength ultrasound enhanced sedimentation filters are second only to the centrifuge in efficiency but, unlike the centrifuge they are easily adapted for continuous flow. Multi-wavelength resonators are also an obvious consideration when half-wavelength chambers are too small for a specific application. Unfortunately the formula, bigger = higher-throughput, does not scale linearly. Here we describe the relationships between chamber size and throughput for acoustic, electrical, flow and thermal convection actions, allowing the user to define initial parameters for their specific applications with some confidence. We start with a review of some of the many forms of multi-wavelength particle manipulation systems.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Transductores
4.
Lab Chip ; 13(1): 25-39, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23138938

RESUMEN

In part 21 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we review applications of ultrasonic standing waves used for enhancing immunoassays and particle sensors. The paper covers ultrasonic enhancement of bead-based immuno-agglutination assays, bead-based immuno-fluorescence assays, vibrational spectroscopy sensors and cell deposition on a sensor surface.


Asunto(s)
Inmunoensayo/métodos , Técnicas Analíticas Microfluídicas/métodos , Ultrasonido/métodos , Técnicas y Procedimientos Diagnósticos , Humanos , Análisis Espectral/métodos
5.
Anal Chem ; 77(19): 6163-8, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16194074

RESUMEN

An integrated, sensitive, and rapid system was developed for the detection of bacteria. The system combined an optical metal-clad leaky waveguide (MCLW) sensor with ultrasound standing waves (USW). The performance of a MCLW sensor for the detection of bacteria has been increased (>100 fold) by using USWs to drive bacteria onto the sensor surface. By forming the USW nodes at or within the surface of the MCLW, the diffusion-limited capture rate has been replaced by fast movement. Immobilized anti-BG antibody on the MCLW sensor surface was used to capture Bacillus subtilis var. niger (BG) bacterial spores driven to the surface. This combination of sensor and attractor force combination has been tested by detecting the evanescent scattering from bacterial spores at the sensor surface. Application of ultrasound for 3 min gave a detection limit for BG bacterial spores of 1 x 10(3) spores/mL.


Asunto(s)
Bacillus subtilis/ultraestructura , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Óptica y Fotónica , Esporas Bacterianas
6.
Ultrasound Med Biol ; 31(2): 261-72, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15708466

RESUMEN

Ultrasonic forces may be used to manipulate particles in suspension. For example, a standing wave ultrasound (US) field applied to a suspension moves the particles toward areas of minimal acoustic pressure, where they are orderly retained creating a predictable heterogeneous distribution. This principle of ultrasonic retention of particles or cells has been applied in numerous biotechnological applications, such as mammalian cell filtering and red blood cell sedimentation. Here, a new US-based cell immobilisation technique is described that allows manipulation and positioning of cells/particles within various nontoxic gel matrices before polymerisation. Specifically, gel immobilisation was used to directly demonstrate that the viability of yeast cells arranged by an US standing wave is maintained up to 4 days after treatment. The versatility of this immobilisation method was validated using a wide range of acoustic devices. Finally, the potential biotechnological advantages of this US-controlled particle positioning method combined with gel immobilisation/encapsulation technology are discussed.


Asunto(s)
Células Inmovilizadas , Geles , Microesferas , Ultrasonido , Células Cultivadas , Eritrocitos , Humanos , Microscopía/métodos , Microscopía Confocal/métodos , Modelos Biológicos , Saccharomyces cerevisiae/citología , Manejo de Especímenes , Suspensiones
7.
Lab Chip ; 4(5): 446-52, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15472728

RESUMEN

Ultrasound standing wave radiation force and laminar flow have been used to transfer yeast cells from one liquid medium to another (washing) by a continuous field-flow fractionation (FFF) approach. Two co-flowing streams, a cell-free suspending phase (flow rate > 50% of the total flow-through volume) and a yeast suspension, were introduced parallel to the nodal plane of a 3 MHz standing wave resonator. The resonator was fabricated to have a single pressure nodal plane at the centre line of the chamber. Laminar flow ensured a stable interface was maintained as the two suspending phases flowed through the sound field. Initiation of the ultrasound transferred cells to the cell-free phase within 0.5 s. This particle transfer procedure circumvents the pellet formation and re-suspension steps of centrifuge based washing procedures. In addition, fluid mixing was demonstrated in the same chamber at higher sound pressures. The channel operates under negligible back-pressure (cross-section, 0.25 [times] 10 mm) and with only one flow convergence and one flow division step, the channel cannot be easily blocked. The force acting on the cells is small; less than that experienced in a centrifuge generating 100g. The acoustically-driven cell transfer and mixing procedures described may be particularly appropriate for the increasingly complex operations required in molecular biology and microbiology and especially for their conversion to continuous flow processes.


Asunto(s)
Separación Celular/instrumentación , Separación Celular/métodos , Microfluídica/instrumentación , Ultrasonido , Recuento de Células , Diseño de Equipo , Microfluídica/métodos , Levaduras/citología
8.
Biosens Bioelectron ; 19(9): 1021-8, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15018957

RESUMEN

Bacteria in water have been driven to a glass surface by an ultrasonic standing wave. On an antibody coated surface capture of Bacillus subtilis var niger (BG) spores (6.6 x 10(6) ml(-1)) was increased more than 200-fold over above the efficiency in the absence of ultrasound. In microfluidic (non-turbulent) systems detection of particles by sensors operating at a surface is diffusion limited. This results in very low detection abilities particularly for particles with diameters greater than 1 microm. Ultrasound is used here to drive bacterial spores to a wall and overcome this limitation. The results confirm: (1) pressure nodes can be formed close to the water-glass interface when the glass thickness is near half the ultrasonic wavelength; (2) the antibody used was able to capture spores in the presence of an ultrasonic standing wave.


Asunto(s)
Bacillus subtilis , Adhesión Bacteriana , Vidrio , Ultrasonido , Esporas Bacterianas
9.
Ultrasonics ; 40(1-8): 385-92, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12159971

RESUMEN

The potential of ultrasonic techniques for the separation and concentration of particles within a fluid has been investigated in some detail in recent years. Devices for effecting such separation typically consist of a piezoceramic transducer driving into a matching layer, fluid layer and reflector layer. This paper uses an equivalent-circuit transducer model, coupled with acoustic impedance transfer relationships to model such cells with regards to both their electrical characteristics and the strength of the resonance produced under different conditions. The model is compared with experimental results from two different cells and is shown to match experimental values well in terms of electrical characteristics and separator performance. The effects of matching layer thickness are also examined using the model. The importance of the adhesive bonding layer is demonstrated, and it is shown that the model can predict the effects of such a layer. The model is also used to demonstrate the effects of coincident resonances in cell layers and to examine the pressure distribution across cells at key frequencies.

10.
J Acoust Soc Am ; 111(3): 1259-66, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11931302

RESUMEN

The quantitative performance of a "single half-wavelength" acoustic resonator operated at frequencies around 3 MHz as a continuous flow microparticle filter has been investigated. Standing wave acoustic radiation pressure on suspended particles (5-microm latex) drives them towards the center of the half-wavelength separation channel. Clarified suspending phase from the region closest to the filter wall is drawn away through a downstream outlet. The filtration efficiency of the device was established from continuous turbidity measurements at the filter outlet. The frequency dependence of the acoustic energy density in the aqueous particle suspension layer of the filter system was obtained by application of the transfer matrix model [H. Nowotny and E. Benes, J. Acoust. Soc. Am. 82, 513-521 (1987)]. Both the measured clearances and the calculated energy density distributions showed a maximum at the fundamental of the piezoceramic transducer and a second, significantly larger, maximum at another system's resonance not coinciding with any of the transducer or empty chamber resonances. The calculated frequency of this principal energy density maximum was in excellent agreement with the optimal clearance frequency for the four tested channel widths. The high-resolution measurements of filter performance provide, for the first time, direct verification of the matrix model predictions of the frequency dependence of acoustic energy density in the water layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...