Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Ther Methods Clin Dev ; 17: 796-809, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32355868

RESUMEN

In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.

2.
Mol Ther Methods Clin Dev ; 17: 455-464, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32226796

RESUMEN

Conditioning chemotherapy is used to deplete hematopoietic stem cells in the recipient's marrow, facilitating donor cell engraftment. Although effective, a major issue with chemotherapy is the systemic genotoxicity that increases the risk for secondary malignancies. Antibody conjugates targeting hematopoietic cells are an emerging non-genotoxic method of opening the marrow niche and promoting engraftment of transplanted cells while maintaining intact marrow cellularity. Specifically, this platform would be useful in diseases associated with DNA damage or cancer predisposition, such as dyskeratosis congenita, Schwachman-Diamond syndrome, and Fanconi anemia (FA). Our approach utilizes antibody-drug conjugates (ADC) as an alternative conditioning regimen in an FA mouse model of autologous transplantation. Antibodies targeting either CD45 or CD117 were conjugated to saporin (SAP), a ribosomal toxin. FANCA knockout mice were conditioned with either CD45-SAP or CD117-SAP prior to receiving whole marrow from a heterozygous healthy donor. Bone marrow and peripheral blood analysis revealed equivalent levels of donor engraftment, with minimal toxicity in ADC-treated groups as compared with cyclophosphamide-treated controls. Our findings suggest ADCs may be an effective conditioning strategy in stem cell transplantation not only for diseases where traditional chemotherapy is not tolerated, but also more broadly for the field of blood and marrow transplantation.

3.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31416800

RESUMEN

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos
4.
Nat Mater ; 18(10): 1124-1132, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31133730

RESUMEN

Ex vivo CRISPR gene editing in haematopoietic stem and progenitor cells has opened potential treatment modalities for numerous diseases. The current process uses electroporation, sometimes followed by virus transduction. While this complex manipulation has resulted in high levels of gene editing at some genetic loci, cellular toxicity was observed. We have developed a CRISPR nanoformulation based on colloidal gold nanoparticles with a unique loading design capable of cellular entry without the need for electroporation or viruses. This highly monodispersed nanoformulation avoids lysosomal entrapment and localizes to the nucleus in primary human blood progenitors without toxicity. Nanoformulation-mediated gene editing is efficient and sustained with different CRISPR nucleases at multiple loci of therapeutic interest. The engraftment kinetics of nanoformulation-treated primary cells in humanized mice are better relative to those of non-treated cells, with no differences in differentiation. Here we demonstrate non-toxic delivery of the entire CRISPR payload into primary human blood progenitors.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nanopartículas del Metal/química , Células Madre/citología , Animales , Sangre , Electroporación , Oro/química , Humanos
5.
J Vis Exp ; (144)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30829324

RESUMEN

Hematopoietic stem and progenitor cell (HSPC) transplantation has been a cornerstone therapy for leukemia and other cancers for nearly half a century, underlies the only known cure of human immunodeficiency virus (HIV-1) infection, and shows immense promise in the treatment of genetic diseases such as beta thalassemia. Our group has developed a protocol to model HSPC gene therapy in nonhuman primates (NHPs), allowing scientists to optimize many of the same reagents and techniques that are applied in the clinic. Here, we describe methods for purifying CD34+ HSPCs and long-term persisting hematopoietic stem cell (HSC) subsets from primed bone marrow (BM). Identical techniques can be employed for the purification of other HSPC sources (e.g., mobilized peripheral blood stem cells [PBSCs]). Outlined is a 2 day protocol in which cells are purified, cultured, modified with lentivirus (LV), and prepared for infusion back into the autologous host. Key readouts of success include the purity of the CD34+ HSPC population, the ability of purified HSPCs to form morphologically distinct colonies in semisolid media, and, most importantly, gene modification efficiency. The key advantage to HSPC gene therapy is the ability to provide a source of long-lived cells that give rise to all hematopoietic cell types. As such, these methods have been used to model therapies for cancer, genetic diseases, and infectious diseases. In each case, therapeutic efficacy is established by enhancing the function of distinct HSPC progeny, including red blood cells, T cells, B cells, and/or myeloid subsets. The methods to isolate, modify, and prepare HSPC products are directly applicable and translatable to multiple diseases in human patients.


Asunto(s)
Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Acondicionamiento Pretrasplante/métodos , Animales , Primates
7.
Mol Ther ; 27(1): 164-177, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391142

RESUMEN

Broadly neutralizing antibodies (bNAbs) are among the most promising strategies to achieve long-term control of HIV-1 in the absence of combination antiretroviral therapy. Passive administration of such antibodies in patients efficiently decreases HIV-1 viremia, but is limited by the serum half-life of the protein. Here, we investigated whether antibody-secreting hematopoietic cells could overcome this problem. We genetically modified human CD34+ hematopoietic stem and progenitor cells (HSPCs) to secrete bNAbs and transplanted them into immunodeficient mice. We found that the gene-modified cells engraft and stably secrete antibodies in the peripheral blood of the animals for the 9 months of the study. Antibodies were predominantly expressed by human HSPC-derived T- and B cells. Importantly, we found that secreted PGT128 was able to delay HIV-1 viremia in vivo and also prevent a decline in CD4+ cells. Gene-modified cells were maintained in bone marrow and were also detected in spleen, thymus, lymph nodes, and gut-associated lymphoid tissue. These data indicate that the bNAb secretion from HSPC-derived cells in mice is functional and can affect viral infection and CD4+ cell maintenance. This study paves the way for potential applications to other diseases requiring long-lasting protein or antibody delivery.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD34/metabolismo , Linfocitos B/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Humanos , Antígenos Comunes de Leucocito/metabolismo , Hígado/metabolismo , Tejido Linfoide/metabolismo , Ratones , ARN Viral/genética , ARN Viral/metabolismo , Linfocitos T/metabolismo , Carga Viral , Viremia/genética , Viremia/metabolismo
8.
J Gene Med ; 20(10-11): e3050, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129972

RESUMEN

BACKGROUND: Gene therapy approaches for the treatment of Fanconi anemia (FA) hold promise for patients without a suitably matched donor for an allogeneic bone marrow transplant. However, significant limitations include the collection of sufficient stem cell numbers from patients, the fragility of these cells during ex vivo manipulation, and clinically meaningful engraftment following transplantation. With these challenges in mind, we were interested in determining (i) whether gene-corrected cells at progressively lower numbers can successfully engraft in FA; (ii) whether low-dose conditioning facilitates this engraftment; and (iii) whether these cells can be selected for post-transplant. METHODS: Utilizing a well characterized mouse model of FA, we infused donor bone marrow from healthy heterozygote littermates that are unaffected carriers of the FANCA mutation to mimic a gene-corrected product, after administering low-dose conditioning. Once baseline engraftment was observed, we administered a second, very-low selective dose to determine whether gene-corrected cells could be selected for in vivo. RESULTS: We demonstrate that upfront low-dose conditioning greatly increases successful engraftment of hematopoietic corrected cells in a pre-clinical animal model of FA. Additionally, without conditioning, cells can still engraft and demonstrate a selective advantage in vivo over time following transplantation, and these corrected cells can be directly selected for in vivo after engraftment. CONCLUSIONS: Minimal conditioning prior to bone marrow transplant in Fanconi anemia promotes the multi-lineage engraftment of 10-fold fewer cells compared to nonconditioned controls. These data provide important insights into the potential of minimally toxic conditioning protocols for FA gene therapy applications.


Asunto(s)
Trasplante de Médula Ósea/métodos , Ciclofosfamida/administración & dosificación , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Recuento de Células , Relación Dosis-Respuesta a Droga , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunosupresores/administración & dosificación , Lentivirus/genética , Ratones Noqueados
9.
Haematologica ; 103(11): 1806-1814, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29976742

RESUMEN

A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi , Anemia de Fanconi , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Transducción Genética , Autoinjertos , Niño , Preescolar , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/biosíntesis , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Persona de Mediana Edad
10.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997284

RESUMEN

The genomic integration of HIV into cells results in long-term persistence of virally infected cell populations. This integration event acts as a heritable mark that can be tracked to monitor infected cells that persist over time. Previous reports have documented clonal expansion in people and have linked them to proto-oncogenes; however, their significance or contribution to the latent reservoir has remained unclear. Here, we demonstrate that a directed pattern of clonal expansion occurs in vivo, specifically in gene pathways important for viral replication and persistence. These biological processes include cellular division, transcriptional regulation, RNA processing, and posttranslational modification pathways. This indicates preferential expansion when integration events occur within genes or biological pathways beneficial for HIV replication and persistence. Additionally, these expansions occur quickly during unsuppressed viral replication in vivo, reinforcing the importance of early intervention for individuals to limit reservoir seeding of clonally expanded HIV-infected cells.


Asunto(s)
Genes Virales/genética , Infecciones por VIH/genética , VIH-1/genética , Integración Viral/genética , Replicación Viral/genética , Vacunas contra el SIDA , Animales , Linfocitos T CD4-Positivos , División Celular , Cromosomas Humanos/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones Endogámicos NOD , Integración Viral/fisiología
12.
Mol Ther Methods Clin Dev ; 8: 52-64, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29255741

RESUMEN

We recently reported on an in vivo hematopoietic stem cell (HSC) gene therapy approach. It involves the subcutaneous injections of G-CSF/AMD3100 to mobilize HSCs from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating helper-dependent adenovirus vector system. HSCs transduced in the periphery homed back to the bone marrow, where they persisted long-term. However, high transgene marking rates found in primitive bone marrow HSCs were not reflected in peripheral blood cells. Here, we tested small-molecule drugs to achieve selective mobilization and transduction of HSCs. We found more efficient GFP marking in bone marrow HSCs but no increased marking in the peripheral blood cells. We then used an in vivo HSC chemo-selection based on a mutant of the O6-methylguanine-DNA methyltransferase (mgmtP140K) gene that confers resistance to O6-BG/BCNU and should give stably transduced HSCs a proliferation stimulus and allow for the selective survival and expansion of progeny cells. Short-term exposure of G-CSF/AMD3100-mobilized, in vivo-transduced mice to relatively low selection drug doses resulted in stable GFP expression in up to 80% of peripheral blood cells. Overall, the further improvement of our in vivo HSC transduction approach creates the basis for a simpler HSC gene therapy.

13.
Sci Transl Med ; 9(414)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093179

RESUMEN

Hematopoietic reconstitution after bone marrow transplantation is thought to be driven by committed multipotent progenitor cells followed by long-term engrafting hematopoietic stem cells (HSCs). We observed a population of early-engrafting cells displaying HSC-like behavior, which persisted long-term in vivo in an autologous myeloablative transplant model in nonhuman primates. To identify this population, we characterized the phenotype and function of defined nonhuman primate hematopoietic stem and progenitor cell (HSPC) subsets and compared these to human HSPCs. We demonstrated that the CD34+CD45RA-CD90+ cell phenotype is highly enriched for HSCs. This population fully supported rapid short-term recovery and robust multilineage hematopoiesis in the nonhuman primate transplant model and quantitatively predicted transplant success and time to neutrophil and platelet recovery. Application of this cell population has potential in the setting of HSC transplantation and gene therapy/editing approaches.


Asunto(s)
Linaje de la Célula , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD/metabolismo , Plaquetas/citología , Células Clonales , Humanos , Macaca nemestrina , Neutrófilos/citología , Fenotipo , Transcriptoma/genética , Trasplante Autólogo
14.
Cytotherapy ; 19(11): 1325-1338, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28751153

RESUMEN

Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.


Asunto(s)
Trasplante de Médula Ósea/métodos , Edición Génica/métodos , Infecciones por VIH/terapia , Receptores CCR5/genética , Animales , Ensayos Clínicos como Asunto , Sangre Fetal/citología , Vectores Genéticos , VIH-1/patogenicidad , Humanos , Lentivirus/genética , Mutación , Trasplante Homólogo/métodos , Resultado del Tratamiento
15.
Mol Ther Methods Clin Dev ; 6: 17-30, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28649577

RESUMEN

Adoptive cellular immunotherapy is a promising and powerful method for the treatment of a broad range of malignant and infectious diseases. Although the concept of cellular immunotherapy was originally proposed in the 1990s, it has not seen successful clinical application until recent years. Despite significant progress in creating engineered receptors against both malignant and viral epitopes, no efficient preclinical animal models exist for rapidly testing and directly comparing these engineered receptors. The use of matured human T cells in mice usually leads to graft-versus-host disease (GvHD), which severely limits the effectiveness of such studies. Alternatively, adult apheresis CD34+ cells engraft in neonatal non-obese diabetic (NOD)-severe combined immunodeficiency (SCID)-common γ chain-/- (NSG) mice and lead to the development of CD3+ T cells in peripheral circulation. We demonstrate that these in vivo murine-matured autologous CD3+ T cells from humans (MATCH) can be collected from the mice, engineered with lentiviral vectors, reinfused into the mice, and detected in multiple lymphoid compartments at stable levels over 50 days after injection. Unlike autologous CD3+ cells collected from human donors, these MATCH mice did not exhibit GvHD after T cell administration. This novel mouse model offers the opportunity to screen different immunotherapy-based treatments in a preclinical setting.

16.
Nat Commun ; 7: 13173, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762266

RESUMEN

Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However, current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility, limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here, we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow, and reconstitute human haematopoiesis in immunocompromised mice. Importantly, nonhuman primate autologous gene-modified CD34+ cell products are capable of stable, polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy, there is enormous potential for this approach to treat patients on a global scale.


Asunto(s)
Automatización de Laboratorios/instrumentación , Separación Celular/métodos , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Lentivirus/genética , Transducción Genética/métodos , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Automatización de Laboratorios/normas , Biomarcadores/metabolismo , Separación Celular/instrumentación , Separación Celular/normas , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/metabolismo , Macaca nemestrina , Ratones , Coloración y Etiquetado/métodos , Transducción Genética/normas
17.
Blood ; 128(18): 2206-2217, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27554082

RESUMEN

Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.


Asunto(s)
Terapia Genética/métodos , Movilización de Célula Madre Hematopoyética/métodos , Proteína Cofactora de Membrana/biosíntesis , Transducción Genética/métodos , Adenoviridae , Animales , Vectores Genéticos/administración & dosificación , Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL
18.
Mol Ther Methods Clin Dev ; 3: 16007, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26958575

RESUMEN

We have focused on gene therapy approaches to induce functional cure/remission of HIV-1 infection. Here, we evaluated the safety and efficacy of the clinical grade anti-HIV lentiviral vector, Cal-1, in pigtailed macaques (Macaca nemestrina). Cal-1 animals exhibit robust levels of gene marking in myeloid and lymphoid lineages without measurable adverse events, suggesting that Cal-1 transduction and autologous transplantation of hematopoietic stem cells are safe, and lead to long-term, multilineage engraftment following myeloablative conditioning. Ex vivo, CD4+ cells from transplanted animals undergo positive selection in the presence of simian/human immunodeficiency virus (SHIV). In vivo, Cal-1 gene-marked cells are evident in the peripheral blood and in HIV-relevant tissue sites such as the gastrointestinal tract. Positive selection for gene-marked cells is observed in blood and tissues following SHIV challenge, leading to maintenance of peripheral blood CD4+ T-cell counts in a normal range. Analysis of Cal-1 lentivirus integration sites confirms polyclonal engraftment of gene-marked cells. Following infection, a polyclonal, SHIV-resistant clonal repertoire is established. These findings offer strong preclinical evidence for safety and efficacy of Cal-1, present a new method for tracking protected cells over the course of virus-mediated selective pressure in vivo, and reveal previously unobserved dynamics of virus-dependent T-cell selection.

19.
Exp Hematol ; 44(6): 502-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27016273

RESUMEN

The cell surface marker CD133 has been used to describe a revised model of adult human hematopoiesis, with hematopoietic stem cells and multipotent progenitors (HSCs/MPPs: CD133(+)CD45RA(-)CD34(+)) giving rise to lymphomyeloid-primed progenitors (LMPPs: CD133(+)CD45RA(+)CD34(+)) and erythromyeloid progenitors (EMPs: CD133(low)CD45RA(-)CD34(+)). Because adult and fetal hematopoietic stem and progenitor cells (HSPCs) differ in their gene expression profile, differentiation capabilities, and cell surface marker expression, we were interested in whether the reported segregation of lineage potentials in adult human hematopoiesis would also apply to human fetal liver. CD133 expression was easily detected in human fetal liver cells, and the defined hematopoietic subpopulations were similar to those found for adult HSPCs. Fetal HSPCs were enriched for EMPs and HSCs/MPPs, which were primed toward erythromyeloid differentiation. However, the frequency of multipotent CD133(+)CD45RA(-)CD34(+) HSPCs was much lower than previously reported and comparable to that of umbilical cord blood. We noted that engraftment in NSG (NOD scid gamma [NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ]) mice was driven mostly by LMPPs, confirming recent findings that repopulation in mice is not a unique feature of multipotent HSCs/MPPs. Thus, our data challenge the general assumption that human fetal liver contains a greater percentage of multipotent HSCs/MPPs than any adult HSC source, and the mouse model may have to be re-evaluated with respect to the type of readout it provides.


Asunto(s)
Células Madre Adultas/metabolismo , Antígenos CD/metabolismo , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Células Madre Multipotentes/metabolismo , Fenotipo , Antígeno AC133/metabolismo , Células Madre Adultas/citología , Animales , Antígenos CD34/metabolismo , Recuento de Células , Linaje de la Célula , Feto , Células Madre Hematopoyéticas/citología , Humanos , Inmunofenotipificación , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Multipotentes/citología
20.
AIDS ; 29(13): 1597-606, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26372270

RESUMEN

OBJECTIVE: We have previously demonstrated robust control of simian/human immunodeficiency virus (SHIV1157-ipd3N4) viremia following administration of combination antiretroviral therapy (cART) in pigtailed macaques. Here, we sought to determine the safety of hematopoietic stem cell transplantation (HSCT) in cART-suppressed and unsuppressed animals. DESIGN: We compared disease progression in animals challenged with SHIV 100 days post-transplant, to controls that underwent transplant following SHIV challenge and stable cART-dependent viral suppression. METHODS: SHIV viral load, cART levels, and anti-SHIV antibodies were measured longitudinally from plasma/serum from each animal. Flow cytometry was used to assess T-cell subset frequencies in peripheral blood and the gastrointestinal tract. Deep sequencing was used to identify cART resistance mutations. RESULTS: In control animals, virus challenge induced transient peak viremia, viral set point, and durable suppression by cART. Subsequent HSCT was not associated with adverse events in these animals. Post-transplant animals were challenged during acute recovery following HSCT, and displayed sustained peak viremia and cART resistance. Although post-transplant animals had comparable plasma levels of antiretroviral drugs and showed no evidence of enhanced infection of myeloid subsets in the periphery, they exhibited a drastic reduction in virus-specific antibody production and decreased T-cell counts. CONCLUSIONS: These results suggest that virus challenge prior to complete transplant recovery impairs viral control and may promote drug resistance. These findings may also have implications for scheduled treatment interruption studies in patients on cART during post-HSCT recovery: premature scheduled treatment interruption could similarly result in lack of viral control and cART resistance.


Asunto(s)
Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico , Farmacorresistencia Viral , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Mutación Missense , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Animales , Antirretrovirales/sangre , Anticuerpos Antivirales/sangre , Progresión de la Enfermedad , Citometría de Flujo , Tracto Gastrointestinal/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios Longitudinales , Macaca , Masculino , Plasma/química , Plasma/virología , ARN Viral/genética , Subgrupos de Linfocitos T/inmunología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...