Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 18(3): 1047-1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826655

RESUMEN

The medial dendrites (MDs) of granule cells (GCs) receive spatial information through the medial entorhinal cortex (MEC) from the entorhinal cortex in the rat hippocampus while the distal dendrites (DDs) of GCs receive non-spatial information (sensory inputs) through the lateral entorhinal cortex (LEC). However, it is unclear how information processing through the two pathways is managed in GCs. In this study, we investigated associative information processing between two independent inputs to MDs and DDs. First, in physiological experiments, to compare response characteristics between MDs and DDs, electrical stimuli comprising five pulses were applied to the MPP or LPP in rat hippocampal slices. These stimuli transiently decreased the excitatory postsynaptic potentials (EPSPs) of successive input pulses to MDs, whereas EPSPs to DDs showed sustained responses. Next, in computational experiments using a local network model obtained by fitting of the physiological experimental data, we compared associative information processing between DDs and MDs. The results showed that the temporal pattern sensitivity for burst inputs to MDs depended on the frequency of the random pulse inputs applied to DDs. On the other hand, with lateral inhibition to GCs from interneurons, the temporal pattern sensitivity for burst inputs to MDs was enhanced or tuned up according to the frequency of the random pulse inputs to the other cells. Thus, our results suggest that the temporal pattern sensitivity of spatial information depends on the non-spatial inputs to GCs.

2.
Cogn Neurodyn ; 9(1): 1-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26052358

RESUMEN

The hippocampus organizes sequential memory composed of non-spatial information (such as objects and odors) and spatial information (places). The dentate gyrus (DG) in the hippocampus receives two types of information from the lateral and medial entorhinal cortices. Non-spatial and spatial information is delivered respectively to distal and medial dendrites (MDs) of granule cells (GCs) within the molecular layer in the DG. To investigate the role of the association of those two inputs, we measured the response characteristics of distal and MDs of a GC in a rat hippocampal slice and developed a multi-compartment GC model with dynamic synapses; this model reproduces the response characteristics of the dendrites. Upon applying random inputs or input sequences generated by a Markov process to the computational model, it was found that a high-frequency random pulse input to distal dendrites (DDs) and, separately, regular burst inputs to MDs were effective for inducing GC activation. Furthermore, when the random and theta burst inputs were simultaneously applied to the respective dendrites, the pattern discrimination for theta burst input to MDs that caused slight GC activation was enhanced in the presence of random input to DDs. These results suggest that the temporal pattern discrimination of spatial information is originally involved in a synaptic characteristic in GCs and is enhanced by non-spatial information input to DDs. Consequently, the co-activation of two separate inputs may play a crucial role in the information processing on dendrites of GCs by usefully combing each temporal sequence.

3.
Cogn Neurodyn ; 8(4): 267-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25009669

RESUMEN

Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca(2+) channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca(2+) channel activation and may play a crucial role in the integration of input information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...