Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Oral Biosci ; 65(1): 111-118, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640838

RESUMEN

OBJECTIVES: Glycocalyx lines the vascular intraluminal space that regulates fluid movement between the intra- and extra-vascular compartments. The depletion of glycocalyx (GCX) is associated with leukocyte accumulation, possibly causing the endothelial cells to become hyperpermeable in various organs, including oral tissues. Whether neutrophils or macrophages are responsible for developing interstitial edema remains controversial. We explored the pathophysiological mechanism of interstitial edema by examining the role of reactive neutrophils and macrophages and their interactions with GCX. METHODS: An anti-MHC class I antibody was administered intravenously to male BALB/c mice to induce pulmonary edema. Pulmonary edema was evaluated by measuring the lung wet-to-dry weight ratio. Changes in the GCX were evaluated by electron microscopy and measurements of the serum level of soluble syndecan-1. Heparin sulfate was administered to examine its protective effect on the GCX. The macrophages were depleted using clodronate to examine their role in developing edema. RESULTS: The GCX degradation induced by the anti-MHC class I antibody was accompanied by increased serum syndecan-1 and heparan sulfate levels. Macrophage depletion inhibited the development of pulmonary edema, and the administration of supplemental heparin suppressed the edema. CONCLUSIONS: We demonstrated that the degradation of the GCX induced by the anti-MHC class I antibody was suppressed by macrophage depletion. These results suggest that macrophages may play a key role in interstitial edema. Heparin inhibited both the degradation of the GCX and interstitial edema. This study's results may be extrapolated to develop an interventional strategy for inhibiting interstitial edema in various organs.


Asunto(s)
Células Endoteliales , Edema Pulmonar , Ratones , Animales , Masculino , Células Endoteliales/metabolismo , Sindecano-1/metabolismo , Sindecano-1/farmacología , Glicocálix/metabolismo , Edema Pulmonar/metabolismo , Heparina/metabolismo , Heparina/farmacología
2.
Sci Rep ; 12(1): 17999, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289440

RESUMEN

Immunoglobulin A (IgA) is a candidate antibody for oral passive immunization against mucosal pathogens like Shiga toxin-producing Escherichia coli (STEC). We previously established a mouse IgG monoclonal antibody (mAb) neutralizing Shiga toxin 1 (Stx1), a bacterial toxin secreted by STEC. We designed cDNA encoding an anti-Stx1 antibody, in which variable regions were from the IgG mAb and all domains of the heavy chain constant region from a mouse IgA mAb. Considering oral administration, we expressed the cDNA in a plant expression system aiming at the production of enough IgA at low cost. The recombinant-IgA expressed in Arabidopsis thaliana formed the dimeric IgA, bound to the B subunit of Stx1, and neutralized Stx1 toxicity to Vero cells. Colon injury was examined by exposing BALB/c mice to Stx1 via the intrarectal route. Epithelial cell death, loss of crypt and goblet cells from the distal colon were observed by electron microscopy. A loss of secretory granules containing MUC2 mucin and activation of caspase-3 were observed by immunohistochemical methods. Pretreatment of Stx1 with the plant-based recombinant IgA completely suppressed caspase-3 activation and loss of secretory granules. The results indicate that a plant-based recombinant IgA prevented colon damage caused by Stx1 in vivo.


Asunto(s)
Inmunoglobulina A , Escherichia coli Shiga-Toxigénica , Chlorocebus aethiops , Ratones , Animales , Toxina Shiga I , Caspasa 3 , Células Vero , ADN Complementario , Inmunoglobulina G , Escherichia coli Shiga-Toxigénica/genética , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Colon/metabolismo , Mucinas
3.
Dev Biol ; 477: 64-69, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019880

RESUMEN

Cdc42, a Rho family low molecular weight G protein, has important roles in various cell functions, including cytoskeletal rearrangement, cell adhesion and cell proliferation and differentiation. To investigate the involvement of Cdc42 in the activities of vascular endothelial cells, we generated Cdc42 conditional knockout mice in which Cdc42 was time -specifically deficient in vascular endothelial cells (Cdc42 â€‹fl/fl; VE-Cad CreERT: Cdc42 cKO). When the Cdc42 gene was deleted after birth, Cdc42 cKO mice were smaller than the control mice, and died between postnatal day 8 (P8) and P10. Necropsy findings confirmed that these mice had various pathological aberrances in the vessels of most organs, such as blood flow congestion and blood cell invasion. Electron microscopic observations also revealed that capillary endothelial cells were detached from the basement membrane as well as phagocytosis of dead endothelial cells induced by macrophages. Moreover, vascular sprouting from aortic rings induced by VEGF-A was diminished in samples from the Cdc42 cKO mice because of an endothelial cell proliferation defect. These results suggest that Cdc42 in vascular endothelial cells has important roles in blood vessel formation after birth.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Proteína de Unión al GTP cdc42/fisiología , Animales , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...