Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet ; 402(10399): 373-385, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37311468

RESUMEN

BACKGROUND: Erythropoiesis-stimulating agents (ESAs) are the standard-of-care treatment for anaemia in most patients with lower-risk myelodysplastic syndromes but responses are limited and transient. Luspatercept promotes late-stage erythroid maturation and has shown durable clinical efficacy in patients with lower-risk myelodysplastic syndromes. In this study, we report the results of a prespecified interim analysis of luspatercept versus epoetin alfa for the treatment of anaemia due to lower-risk myelodysplastic syndromes in the phase 3 COMMANDS trial. METHODS: The phase 3, open-label, randomised controlled COMMANDS trial is being conducted at 142 sites in 26 countries. Eligible patients were aged 18 years or older, had a diagnosis of myelodysplastic syndromes of very low risk, low risk, or intermediate risk (per the Revised International Prognostic Scoring System), were ESA-naive, and required red blood cell transfusions (2-6 packed red blood cell units per 8 weeks for ≥8 weeks immediately before randomisation). Integrated response technology was used to randomly assign patients (1:1, block size 4) to luspatercept or epoetin alfa, stratified by baseline red blood cell transfusion burden (<4 units per 8 weeks vs ≥4 units per 8 weeks), endogenous serum erythropoietin concentration (≤200 U/L vs >200 to <500 U/L), and ring sideroblast status (positive vs negative). Luspatercept was administered subcutaneously once every 3 weeks starting at 1·0 mg/kg body weight with possible titration up to 1·75 mg/kg. Epoetin alfa was administered subcutaneously once a week starting at 450 IU/kg body weight with possible titration up to 1050 IU/kg (maximum permitted total dose of 80 000 IU). The primary endpoint was red blood cell transfusion independence for at least 12 weeks with a concurrent mean haemoglobin increase of at least 1·5 g/dL (weeks 1-24), assessed in the intention-to-treat population. Safety was assessed in patients who received at least one dose of study treatment. The COMMANDS trial was registered with ClinicalTrials.gov, NCT03682536 (active, not recruiting). FINDINGS: Between Jan 2, 2019 and Aug 31, 2022, 356 patients were randomly assigned to receive luspatercept (178 patients) or epoetin alfa (178 patients), comprising 198 (56%) men and 158 (44%) women (median age 74 years [IQR 69-80]). The interim efficacy analysis was done for 301 patients (147 in the luspatercept group and 154 in the epoetin alfa group) who completed 24 weeks of treatment or discontinued earlier. 86 (59%) of 147 patients in the luspatercept group and 48 (31%) of 154 patients in the epoetin alfa group reached the primary endpoint (common risk difference on response rate 26·6; 95% CI 15·8-37·4; p<0·0001). Median treatment exposure was longer for patients receiving luspatercept (42 weeks [IQR 20-73]) versus epoetin alfa (27 weeks [19-55]). The most frequently reported grade 3 or 4 treatment-emergent adverse events with luspatercept (≥3% patients) were hypertension, anaemia, dyspnoea, neutropenia, thrombocytopenia, pneumonia, COVID-19, myelodysplastic syndromes, and syncope; and with epoetin alfa were anaemia, pneumonia, neutropenia, hypertension, iron overload, COVID-19 pneumonia, and myelodysplastic syndromes. The most common suspected treatment-related adverse events in the luspatercept group (≥3% patients, with the most common event occurring in 5% patients) were fatigue, asthenia, nausea, dyspnoea, hypertension, and headache; and none (≥3% patients) in the epoetin alfa group. One death after diagnosis of acute myeloid leukaemia was considered to be related to luspatercept treatment (44 days on treatment). INTERPRETATION: In this interim analysis, luspatercept improved the rate at which red blood cell transfusion independence and increased haemoglobin were achieved compared with epoetin alfa in ESA-naive patients with lower-risk myelodysplastic syndromes. Long-term follow-up and additional data will be needed to confirm these results and further refine findings in other subgroups of patients with lower-risk myelodysplastic syndromes, including non-mutated SF3B1 or ring sideroblast-negative subgroups. FUNDING: Celgene and Acceleron Pharma.


Asunto(s)
Anemia , COVID-19 , Hematínicos , Hipertensión , Síndromes Mielodisplásicos , Neutropenia , Masculino , Humanos , Femenino , Anciano , Epoetina alfa/efectos adversos , Hematínicos/efectos adversos , Eritropoyesis , Anemia/tratamiento farmacológico , Anemia/etiología , Hipertensión/tratamiento farmacológico , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/inducido químicamente , Hemoglobinas/uso terapéutico , Disnea/tratamiento farmacológico , Peso Corporal
2.
Haematologica ; 104(2): 297-304, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30171026

RESUMEN

Great effort is spent on developing therapies to improve the dire outcomes of those diagnosed with acute myeloid leukemia. The methods for quantifying response to therapeutic intervention have however lacked sensitivity. Patients achieving a complete remission as defined by conventional cytomorphological methods therefore remain at risk of subsequent relapse due to disease persistence. Improved risk stratification is possible based on tests designed to detect this residual leukemic burden (measurable residual disease). However, acute myeloid leukemia is a genetically diverse set of diseases, which has made it difficult to develop a single, highly reproducible, and sensitive assay for measurable residual disease. Here we present the development of a digital targeted RNA-sequencing-based approach designed to overcome these limitations by detecting all newly approved European LeukemiaNet molecular targets for measurable residual disease in acute myeloid leukemia in a single standardized assay. Iterative modifications and novel bioinformatics approaches resulted in a greater than 100-fold increase in performance compared with commercially available targeted RNA-sequencing approaches and a limit of detection as low as one leukemic cell in 100,000 cells measured, which is comparable to quantitative polymerase chain reaction analysis, the current gold standard for the detection of measurable residual disease. This assay, which can be customized and expanded, is the first demonstrated use of high-sensitivity RNA-sequencing for measurable residual disease detection in acute myeloid leukemia and could serve as a broadly applicable standardized tool.


Asunto(s)
Biomarcadores de Tumor , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
3.
EBioMedicine ; 31: 110-121, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29685789

RESUMEN

Therapeutic resistance is a central problem in clinical oncology. We have developed a systematic genome-wide computational methodology to allow prioritization of patients with favorable and poor therapeutic response. Our method, which integrates DNA methylation and mRNA expression data, uncovered a panel of 5 differentially methylated sites, which explain expression changes in their site-harboring genes, and demonstrated their ability to predict primary resistance to androgen-deprivation therapy (ADT) in the TCGA prostate cancer patient cohort (hazard ratio = 4.37). Furthermore, this panel was able to accurately predict response to ADT across independent prostate cancer cohorts and demonstrated that it was not affected by Gleason, age, or therapy subtypes. We propose that this panel could be utilized to prioritize patients who would benefit from ADT and patients at risk of resistance that should be offered an alternative regimen. Such approach holds a long-term objective to build an adaptable accurate platform for precision therapeutics.


Asunto(s)
Andrógenos , Metilación de ADN , ADN de Neoplasias , Epigenómica , Modelos Biológicos , Neoplasias de la Próstata , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Factores de Riesgo
4.
Cancer Discov ; 7(7): 736-749, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28411207

RESUMEN

Current treatments for castration-resistant prostate cancer (CRPC) that target androgen receptor (AR) signaling improve patient survival, yet ultimately fail. Here, we provide novel insights into treatment response for the antiandrogen abiraterone by analyses of a genetically engineered mouse (GEM) model with combined inactivation of Trp53 and Pten, which are frequently comutated in human CRPC. These NPp53 mice fail to respond to abiraterone and display accelerated progression to tumors resembling treatment-related CRPC with neuroendocrine differentiation (CRPC-NE) in humans. Cross-species computational analyses identify master regulators of adverse response that are conserved with human CRPC-NE, including the neural differentiation factor SOX11, which promotes neuroendocrine differentiation in cells derived from NPp53 tumors. Furthermore, abiraterone-treated NPp53 prostate tumors contain regions of focal and/or overt neuroendocrine differentiation, distinguished by their proliferative potential. Notably, lineage tracing in vivo provides definitive and quantitative evidence that focal and overt neuroendocrine regions arise by transdifferentiation of luminal adenocarcinoma cells. These findings underscore principal roles for TP53 and PTEN inactivation in abiraterone resistance and progression from adenocarcinoma to CRPC-NE by transdifferentiation.Significance: Understanding adverse treatment response and identifying patients likely to fail treatment represent fundamental clinical challenges. By integrating analyses of GEM models and human clinical data, we provide direct genetic evidence for transdifferentiation as a mechanism of drug resistance as well as for stratifying patients for treatment with antiandrogens. Cancer Discov; 7(7); 736-49. ©2017 AACR.See related commentary by Sinha and Nelson, p. 673This article is highlighted in the In This Issue feature, p. 653.


Asunto(s)
Androstenos/administración & dosificación , Tumores Neuroendocrinos/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Proteína p53 Supresora de Tumor/genética , Androstenos/efectos adversos , Animales , Línea Celular Tumoral , Transdiferenciación Celular/efectos de los fármacos , Transdiferenciación Celular/genética , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/efectos de los fármacos , Factores de Transcripción SOXC/genética , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...