Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Breathe (Sheff) ; 19(4): 230145, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38351947

RESUMEN

Malignant pleural disease represents a growing healthcare burden. Malignant pleural effusion affects approximately 1 million people globally per year, causes disabling breathlessness and indicates a shortened life expectancy. Timely diagnosis is imperative to relieve symptoms and optimise quality of life, and should give consideration to individual patient factors. This review aims to provide an overview of epidemiology, pathogenesis and suggested diagnostic pathways in malignant pleural disease, to outline management options for malignant pleural effusion and malignant pleural mesothelioma, highlighting the need for a holistic approach, and to discuss potential challenges including non-expandable lung and septated effusions.

3.
Nat Commun ; 13(1): 5333, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088370

RESUMEN

Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Antígenos de Linfocitos T/genética
4.
J Biol Chem ; 295(33): 11486-11494, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32532817

RESUMEN

T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígeno HLA-A2/inmunología , Proteínas de Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Antígenos de Neoplasias/química , Cristalografía por Rayos X , Antígeno HLA-A2/química , Humanos , Modelos Moleculares , Proteínas de Neoplasias/química , Péptidos/química , Péptidos/inmunología , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/química
5.
Sensors (Basel) ; 20(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422961

RESUMEN

Semantic interoperability for the Internet of Things (IoT) is enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, we have investigated the scalability and robustness of RDF (Resource Description Framework)engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at the edge facilitates the deployment of semantic integration gateways closer to low-level devices. Our focus is on how to enable scalable and robust RDF engines that can operate on lightweight devices. In this paper, we have first carried out an empirical study of the scalability and behaviour of solutions for RDF data management on standard computing hardware that have been ported to run on lightweight devices at the network edge. The findings of our study shows that these RDF store solutions have several shortcomings on commodity ARM (Advanced RISC Machine) boards that are representative of IoT edge node hardware. Consequently, this has inspired us to introduce a lightweight RDF engine, which comprises an RDF storage and a SPARQL processor for lightweight edge devices, called RDF4Led. RDF4Led follows the RISC-style (Reduce Instruction Set Computer) design philosophy. The design constitutes a flash-aware storage structure, an indexing scheme, an alternative buffer management technique and a low-memory-footprint join algorithm that demonstrates improved scalability and robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than popular RDF engines such as Jena TDB (Tuple Database) and RDF4J, while consuming the same amount of memory. In particular, RDF4Led requires 10%-30% memory of its competitors to operate on datasets of up to 50 million triples. On memory-constrained ARM boards, it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB and RDF4J.

6.
Trends Biotechnol ; 25(3): 125-31, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17257699

RESUMEN

Prostate-specific antigen (PSA) is the best serum marker currently available for the detection of prostate cancer and is the forensic marker of choice for determining the presence of azoospermic semen in some sexual assault cases. Most current assays for PSA detection are processed on large analyzers at dedicated testing sites, which require that samples be sent away for testing. This leads to delays in patient management and increased administration costs. The recent emphasis placed on the need for point-of-care patient management has led to the development of novel biosensor detection strategies that are suitable for the miniaturization of assays for various targets including PSA. This review highlights the current and novel analytical technologies used for PSA detection, which will benefit clinicians, patients and forensic workers in the future.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Biosensibles/tendencias , Medicina Legal/métodos , Antígeno Prostático Específico/análisis , Femenino , Humanos , Inmunoensayo , Masculino , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...