Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Aging (Albany NY) ; 16(12): 10216-10238, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943627

RESUMEN

This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.


Asunto(s)
Apoptosis , Proteína 1 de la Respuesta de Crecimiento Precoz , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Receptores de Hormona Tiroidea , Regulación hacia Arriba , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Animales , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Ratas , Masculino , Humanos , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Ratas Sprague-Dawley , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Persona de Mediana Edad , Adulto , Proteínas del Tejido Nervioso
2.
Environ Sci Technol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875444

RESUMEN

Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.

3.
Ecotoxicol Environ Saf ; 281: 116576, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878562

RESUMEN

The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 µM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 µM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.

4.
J Hazard Mater ; 473: 134711, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795491

RESUMEN

Coastal wetland soils play a critical role in the global mercury (Hg) cycle, serving as both an important repository for total mercury (THg) and a hotspot for methylmercury (MeHg) production. This study investigated Hg pollution in soils dominated by Phragmites australis (PA) and Spartina alterniflora (SA) across five representative China's coastal wetlands (Yellow River (YR), Linhong River (LHR), Yangtze River (CJR), Min River (MR), and Nanliu River (NLR)). The THg concentrations ranged from 16.7 to 446.0 (96.3 ± 59.3 ng g-1, dw), while MeHg concentrations varied from 0.01 to 0.81 (0.12 ± 0.12 ng g-1, dw). We further evaluated Hg risk in these wetlands using potential ecological risk index (Er) and geographical enrichment factor (Igeo). Most wetlands exhibited low to moderate ecological risk, except the PA habitat in the YR wetland, showing moderate to high risk. Soil organic matter significantly influenced THg and MeHg distribution, while MeHg% correlated well with soil salinity and pH. These findings highlight the importance of organic-rich coastal wetland soils in THg and MeHg accumulation, with the soil properties influencing net MeHg production. Furthermore, SA habitat generally exhibited higher MeHg%, suggesting its invasion elevates the ecological risk of MeHg in coastal wetlands. ENVIRONMENTAL IMPLICATION: Mercury (Hg), a global pollutant, poses great risks to wildlife and humans. Since industrialization, anthropogenic Hg release surpassed natural sources. Long-term exposure leads to biomagnification of Hg. This study assessed Hg and methylmercury pollution and risks in soils of five China's coastal wetlands dominated by Phragmites australis and Spartina alterniflora. Environmental factors (total carbon, total organic carbon, total nitrogen, salinity, pH) were analyzed to reveal key variables influencing Hg pollution and methylation. Essential for quantifying Hg pollution in coastal wetlands, the findings provide a scientific basis for effective wetland conservation policies and addressing environmental health in these regions.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Compuestos de Metilmercurio , Contaminantes del Suelo , Humedales , Compuestos de Metilmercurio/análisis , China , Mercurio/análisis , Contaminantes del Suelo/análisis , Suelo/química
5.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692424

RESUMEN

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Asunto(s)
Carbono , Estuarios , Inundaciones , Ríos , China , Ríos/química , Carbono/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis
6.
Sci Rep ; 14(1): 12219, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806680

RESUMEN

Choroid plexus tumors (CPT) are rare and highly vascularized neoplasms that have three histologically confirmed diagnoses, including choroid plexus papilloma, atypical choroid plexus papilloma, and choroid plexus carcinoma (CPC). This study aimed to determine the epidemiology and survival of patients with CPTs and develop a nomogram to quantify the prognosis of the patients with CPT. Data of 808 patients who were diagnosed as CPT between 2000 and 2020 was obtained from the surveillance, epidemiology, and end results database. Descriptive analysis was used to assess the distribution and tumor-related characteristics of the patients with CPT. Independent prognostic factors for patients with CPT were identified by univariate and multivariate Cox regression analysis. The nomogram was established and evaluated by receiver operating characteristic curve, and decision curve analysis (DCA), calibration curves. The independent prognostic factors for patients with CPT are age, tumor size, surgery, chemotherapy, tumor number, pathologies, and race. For the prognostic nomogram, the area under the curve (AUC) of 60-, 120-, and 180-months were 0.855, 0.869 and 0.857 in the training set and 0.836, 0.864 and 0.922 in the test set. The DCA and calibration curve indicated the good performance of the nomogram. Patients with CPTs can be diagnosed at any age. Among the three histopathological tumors, patients with CPC had the worst prognosis. The nomogram was established to predict the prognosis of patients with CPT, which had satisfactory accuracy, and clinical utility may benefit for clinical decision-making.


Asunto(s)
Neoplasias del Plexo Coroideo , Nomogramas , Programa de VERF , Humanos , Neoplasias del Plexo Coroideo/patología , Neoplasias del Plexo Coroideo/epidemiología , Neoplasias del Plexo Coroideo/diagnóstico , Neoplasias del Plexo Coroideo/mortalidad , Femenino , Masculino , Pronóstico , Persona de Mediana Edad , Adulto , Adolescente , Anciano , Niño , Curva ROC , Adulto Joven , Preescolar , Lactante , Carcinoma
7.
Environ Res ; 257: 119251, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815714

RESUMEN

The bioavailable diverse dissolved organic matter (DOM) present in glacial meltwater significantly contributes to downstream carbon cycling in mountainous regions. However, the comprehension of molecular-level characteristics of riverine DOM, from tributary to downstream and their fate in glacier-fed desert rivers remains limited. Herein, we employed spectroscopic and high-resolution mass spectrometry techniques to study both optical and molecular-level characteristics of DOM in the Tarim River catchment, northwest China. The results revealed that the DOC values in the downstream were higher than those in the tributaries, yet they remained comparable to those found in other glacier-fed streams worldwide. Five distinct components were identified using EEM-PARAFAC analysis in both tributary and downstream samples. The dominance of three protein-like components in tributary samples, contrasting with a higher presence of humic-like components in downstream samples, which implied that the dilution and alterations of the glacier DOM signature and overprinting with terrestrial-derived DOM. Molecular composition revealed that thousands of compounds with higher molecular weight and increased aromaticity were transformed, generated and introduced from terrestrial inputs during downstream transportation. The twofold rise in polycyclic aromatic and polyphenolic compounds observed downstream compared to tributaries indicated a greater influx of terrestrial organic matter introduced into the downstream during water transportation. The study suggests that the glacier-sourced DOM experienced minimal photodegradations, with limited influence from human activities, while also being shaped by terrestrial inputs during its transit in the alpine-arid region. This unique scenario offers valuable insights into comprehending the fate of DOM originating from glacial meltwater in arid mountainous regions.

8.
Water Res ; 257: 121719, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728783

RESUMEN

Biological soil crusts (BSCs) are typical covers in arid and semiarid regions. The dissolved organic matter (DOM) of BSCs can be transported to various aquatic ecosystems by rainfall-runoff processes. However, the spatiotemporal variation in quality and quantity of DOM in runoff remains unclear. Herein, four kinds of runoff plots covered by four successional stages of BSCs were set up on slopes, including bare runoff plot (BR), cyanobacteria crust covered runoff plot (CR), mixed crust covered runoff plot (MIR), and moss crust covered runoff plot (MOR). The quantity and quality of DOM in runoff during rainfall was investigated based on the stimulated rainfall experiments combined with optical spectroscopy and ultra-high resolution mass spectrometry analyses. The results showed that the DOM concentrations (i.e., 0.30 to 45.25 mg L-1) in runoff followed the pattern of MOR>MIR>CR>BR, and they were exponentially decreased with rainfall duration. The DOM loss rate of BR (8.26 to 11.64 %) was significantly greater than those of CR, MIR, and MOR (0.84 to 3.22 %). Highly unsaturated compounds (HUCs), unsaturated aliphatic compounds (UACs), saturated compounds (SCs), and peptide-like compounds (PLCs) were the dominated compounds of the water extractable DOM from the original soils. Thereinto, PLCs and UACs were more easily leached into runoff during rainfall. The relatively intensity of HUCs in runoff generally decreased with rainfall duration, while the relatively intensities of UACs, PLCs, and SCs slightly increased with rainfall duration. These findings suggested that the DOM loss rate was effectively decreased with the successional of BSCs during rainfall; meanwhile, some labile compounds (e.g., PLCs and UACs) were transported into various aquatic ecosystems by rainfall-runoff processes.


Asunto(s)
Lluvia , Suelo , Suelo/química , Compuestos Orgánicos , Monitoreo del Ambiente/métodos , Movimientos del Agua
9.
Sci Total Environ ; 928: 172253, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599400

RESUMEN

Antimony (Sb) pollution poses a noteworthy risk to human health and ecosystem sustainability, therefore effective, eco-friendly, and widely accepted restoration methods are urgently needed. This study introduces a new approach of using La(III) foliar application on Solanum nigrum L. (S. nigrum), a cadmium hyperaccumulator, to improve its photosynthetic and root systems under Sb stress, resulting in a higher biomass. Notably, La(III) also enhances endocytosis in root cells, facilitating efficient and non-selective remediation of both Sb(III) and Sb(V) forms. The absorption of Sb by root cell endocytosis was observed visually with a confocal laser scanning microscope. The subcellular distribution of Sb in the cell wall of S. nigrum is reduced. And the antioxidant enzyme activity system is improved, resulting in an enhanced Sb tolerance in S. nigrum. Based on the existing bibliometric analysis, this paper identified optimal conditions for S. nigrum to achieve maximum translocation and bioconcentration factor values for Sb. The foliar application of La(III) on plants treated with Sb(III), Sb(V), and a combination of both resulted in translocation factor values of 0.89, 1.2, 1.13 and bioconcentration factor values of 11.3, 12.81, 14.54, respectively. Our work suggests that La(III)-enhanced endocytosis of S. nigrum root cells is a promising remediation strategy for Sb-contaminated environments.


Asunto(s)
Antimonio , Biodegradación Ambiental , Endocitosis , Contaminantes del Suelo , Solanum nigrum , Solanum nigrum/metabolismo , Contaminantes del Suelo/metabolismo , Antimonio/metabolismo , Endocitosis/fisiología , Raíces de Plantas/metabolismo , Metales de Tierras Raras/metabolismo
10.
Micromachines (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38542579

RESUMEN

Generalized broadband operation facilitates multifunction or multiband highly integrated applications, such as modern transceiver systems, where ultra-wideband bidirectional passive mixers are favored to avoid a complex up/down-conversion scheme. In this paper, a modified Ruthroff-type transmission line transformer (TLT) balun is presented to enhance the isolation of the mixer from the local oscillator (LO) to the radio frequency (RF). Compared to the conventional methods, the proposed Ruthroff-type architecture adopts a combination of shunt capacitors and parallel coupled lines to improve the return loss at the LO port, thus effectively avoiding the area consumption for the diode-to-balun impedance transformation while simultaneously providing a suitable point for IF extraction. In addition, a parallel compensation technique consisting of an inductor and resistor is applied to the RF balun to significantly improve the amplitude/phase balance performance over a wide bandwidth. Benefiting from the aforementioned operations, an isolation-enhanced 8-30 GHz passive double-balanced mixer is designed as a proof-of-principle demonstration via 0.15-micrometer GaAs p-HEMT technology. It exhibits ultra-broadband performance with 7 dB average conversion loss and 50 dB LO-to-RF isolation under 15 dBm LO power. The monolithic microwave integrated circuit area is 0.96 × 1.68 mm2 including all pads.

11.
ACS Environ Au ; 4(1): 31-41, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38250340

RESUMEN

Analyzing the molecular composition change of dissolved organic matter (DOM) during transportation in estuaries can enhance our understanding of the fate of DOM. However, the impact of hydrologic conditions resulting from large river plumes on the DOM cycle are less explored, and previous studies were insufficient to capture the molecular fate that occur during the transportation process. In this study, we used a range of bulk and optical techniques, as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), to determine the concentration and characteristics of DOM along two trajectories of downstream plumes of diluted water of the Yangtze (Changjiang) River estuary (YRE) during the high discharge season. These two plumes situated along the route of the summer Changjiang diluted water (CDW) have been identified and named CDW-North (CDW-N) and CDW-South (CDW-S), respectively. Despite having the same riverine end-member origin, the turbidity zone in YRE significantly modifies the molecular characteristics and composition of DOM. The results of FT-ICR MS indicated a spatial variation of DOM composition in the coastal zone of the two plumes. The relative intensities of the CHO, CHOS, and CHONS compounds are negatively correlated with salinity. In addition, the coastal zones of both CDW-N and CDW-S are characterized by more autochthonous DOM sources. More CHON compounds in CDW-N are probably due to the production of autochthonous DOM in offshore waters. The activity of phytoplankton increased the surface dissolved oxygen level of CDW-N in the coastal zone. However, the hypoxic zone formed at the bottom of the CDW-N due to microbial degradation of organic matter and may further benefit the preservation of CHON compounds. Our study emphasizes that the characteristics and composition of the estuarine DOM can be significantly shaped by distinct large river plumes. Furthermore, using FT-ICR MS in combination with complementary techniques can better assist in identifying the sources and transformation mechanisms of estuarine DOM in large river plume-affected systems and provide more valuable insights into the role of DOM in the estuarine biogeochemical cycle.

12.
Sci Total Environ ; 914: 169827, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190911

RESUMEN

Understanding the molecular composition and fate of dissolved organic matter (DOM) during transport in estuaries is essential for gaining a comprehensive understanding of its role within the global biogeochemical cycle. In 2020, a catastrophic flood occurred in the Yangtze River basin. It is currently unknown whether differences in hydrologic conditions due to extreme flooding will significantly impact the estuarine to oceanic DOM cycle. We determined the DOM composition in the Yangtze River estuary (YRE) to the East China Sea by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) during the high discharge and the flood period (monthly average discharge was 1.2 times higher) on the same trajectory. Our study found that the composition of DOM is more diverse, and more DOM molecules were introduced to the YRE during the flood, especially in the freshwater end member. The result revealed that the DOM was significantly labile and unstable during the flood period. A total of 1840 unique molecular formulas were identified during the flood period, most of which were CHON, CHONS, and CHOS compounds, most likely resulting from anthropogenic inputs from upstream. Only 194 of these molecules were detected in the seawater end member after transporting to the sea, suggesting that the YRE served as a 'filter' of DOM. However, the flood enhances the transport of a group of terrigenous DOM, that is resistant to photodegradation and biodegradation. As a result, YRE experienced ~1.6 times higher terrigenous DOC flux than high discharge period. Considering the increased frequency of future floods, our study provides a preliminary basis for further research on how floods affect the composition and characteristics of estuarine DOM. With the help of the FT-ICR MS technique, we can now better understand the dynamic of DOM composition and characteristics in large river estuaries.

13.
Water Res ; 249: 120942, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043348

RESUMEN

Estuaries are hotspots where terrestrially originated dissolved organic matter (DOM) is modified in molecular composition before entering marine environments. However, very few research has considered nitrogen (N) modifications of DOM molecules in estuaries, limiting our understanding of dissolved organic nitrogen (DON) cycling and the associated carbon cycling in estuaries. This study integrated optical, stable isotopes (δ15N and δ13C) and molecular composition (FT-ICR MS) to characterize the transformation of DOM in the Yangtze River Estuary. Both concentration of dissolved organic carbon (DOC) and DON decreased with increasing salinity, while their δ13C and δ15N increased with the increasing salinity. A significant positive correlation was found between δ15N and δ13C during the transportation of DOM to marginal seas, indicating that the behavior of both DOC and DON are primarily controlled by the mixing of freshwater and the seawater in the YRE. During the mixing process, the DON addition was observed using the conservative mixing curves. In the view of molecular composition, DOM molecules became more aromatic as the number of N atoms increased. Spearman correlations reveal that DOM molecules with fewer N atoms exhibited a higher enrichment in protein-like components, while those with more N atoms were more enriched in humic-like components. In addition, the δ15N and δ13C tended to increase as the N content of DOM decreased. Therefore, DON molecules with fewer N atoms were likely to be transformed into those with more N atoms based on the isotopic fractionation theory. This study establishes a linkage between the molecular composition and the δ15N of DOM, and discovers the N transformation pattern within DOM molecules during the transportation to marginal seas.


Asunto(s)
Materia Orgánica Disuelta , Nitrógeno , Isótopos de Nitrógeno/análisis , Océanos y Mares , Nitrógeno/análisis , Estuarios , Ríos/química
14.
Sci Total Environ ; 912: 168915, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38030000

RESUMEN

Rare earth elements (REEs) are important to enhance agricultural productivity. The utilization of phytoremediation as a green technology for addressing heavy metal (HMs) contamination in soil and wastewater has gained significant attention. In our research, we conducted indoor hydroponic experiments to examine the impacts of lanthanum (La) on the growth and enrichment capacity of Solanum nigrum L. (S. nigrum). S. nigrum was cultivated in 10 mg·L-1 of cadmium (Cd), 25 mg·L-1 of lead (Pb), and a mixture of both (5 mg·L-1 Cd + 15 mg·L-1 Pb). Additionally, S. nigrum were subjected to foliar spray or hydroponic supplementation of La(III). The treatment with La(III) significantly increased total fresh weight by 17.82 % to 42.20 %, compared to the treatment without La(III). Furthermore, La(III) facilitated the endocytosis of roots and enhanced Cd2+ flux ranging from 15.64 % to 75.99 % when compared to the treatment without La(III). Foliar and hydroponic application of La(III) resulted in an increase in the translocation factors (TF) in plants of Cd and Pb compared to treatments without La(III). These findings can offer valuable insights into the potential of La(III) to enhance the phytoremediation of soil or wastewater polluted with compounds.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum nigrum , Cadmio/análisis , Lantano , Plomo/toxicidad , Biodegradación Ambiental , Aguas Residuales , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo/química , Endocitosis
15.
Sci Total Environ ; 908: 168374, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956851

RESUMEN

Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.


Asunto(s)
Cadmio , Contaminantes del Suelo , Humanos , Cadmio/análisis , Lactuca , Lantano/toxicidad , Plomo/toxicidad , Verduras , Endocitosis , Contaminantes del Suelo/análisis , Suelo
16.
Sci Total Environ ; 913: 169282, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141989

RESUMEN

Coastal wetlands play a vital role in mitigating climate change, yet the characteristics of buried organic carbon (OC) and carbon cycling are limited due to difficulties in assessing the composition of OC from different sources (allochthonous vs. autochthonous). In this study, we analyzed the total organic carbon (TOC) to total nitrogen (TN) ratio (C/N), stable carbon isotope (δ13C) composition, and n-alkane content to distinguish different sources of OC in the surface sediments of the coastal wetlands on the western coast of the Bohai Sea. The coupling of the C/N ratio with δ13C and n-alkane biomarkers has been proved to be an effective tool for revealing OC sources. The three end-member Bayesian mixing model based on coupling C/N ratios with δ13C showed that the sedimentary OC was dominated by the contribution of terrestrial particulate organic matter (POM), followed by freshwater algae and marine phytoplankton, with relative contributions of 47 ± 21 %, 41 ± 18 % and 12 ± 17 %, respectively. The relative contributions of terrestrial plants, aquatic macrophytes and marine phytoplankton assessed by n-alkanes were 56 ± 8 %, 35 ± 9 % and 9 ± 5 % in the study area, respectively. The relatively high salinity levels and strong hydrodynamic conditions of the Beidagang Reservoir led to higher terrestrial plants source and lower aquatic macrophytes source than these of Qilihai Reservoir based on the assessment of n-alkanes. Both methods showed that sedimentary OC was mainly derived from terrestrial sources (plant-dominated), suggesting that vegetation plays a crucial role in storing carbon in coastal wetlands, thus, the coastal vegetation management needs to be strengthened in the future. Our findings provide insights into the origins and dynamics of OC in coastal wetlands on the western coast of the Bohai Sea and a significant scientific basis for future monitoring of the blue carbon budget balance in coastal wetlands.

17.
Life (Basel) ; 13(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895449

RESUMEN

Ants (Formicidae) are the most diverse eusocial insects in Hymenoptera, distributed across 17 extant subfamilies grouped into 3 major clades, the Formicoid, Leptanilloid, and Poneroid. While the mitogenomes of Formicoid ants have been well studied, there is a lack of published data on the mitogenomes of Poneroid ants, which requires further characterization. In this study, we first present three complete mitogenomes of Poneroid ants: Paraponera clavata, the only extant species from the subfamily Paraponerinae, and two species (Harpegnathos venator and Buniapone amblyops) from the Ponerinae subfamily. Notable novel gene rearrangements were observed in the new mitogenomes, located in the gene blocks CR-trnM-trnI-trnQ-ND2, COX1-trnK-trnD-ATP8, and ND3-trnA-trnR-trnN-trnS1-trnE-trnF-ND5. We reported the duplication of tRNA genes for the first time in Formicidae. An extra trnQ gene was identified in H. venator. These gene rearrangements could be explained by the tandem duplication/random loss (TDRL) model and the slipped-strand mispairing model. Additionally, one large duplicated region containing tandem repeats was identified in the control region of P. clavata. Phylogenetic analyses based on protein-coding genes and rRNA genes via maximum likelihood and Bayes methods supported the monophyly of the Poneroid clade and the sister group relationship between the subfamilies Paraponerinae and Amblyoponinae. However, caution is advised in interpreting the positions of Paraponerinae due to the potential artifact of long-branch attraction.

18.
Water Res ; 245: 120582, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708777

RESUMEN

Dissolved organic matter (DOM) is one of the largest reactive reservoirs of carbon on earth. Saltmarshes play an essential role in shaping the fate of DOM and greenhouse gas (GHG) production in surface water and groundwater interactions in coastal areas. However, the coupling mechanism between DOM and GHG production is poorly understood. In this study, DOM in both surface water and porewater were analyzed by 3D excitation-emission-matrix spectroscopy under different seasonal and tidal conditions in a saltmarsh. Protein-like DOM was likely to produce CH4, while humic-like DOM tended to produce CO2. CH4 concentration was highly enriched in porewater because increasing fresh groundwater flow introduced small-sized protein-like DOM. Based on the mass balance model, >98.5% of CH4 was oxidated to CO2 in sediment-water interface. The degradation of sediment-derived DOC (especially humic-like DOM) contributes ∼80% of the total amount of CO2 in surface water. Both hydrodynamics and chemical reactions are suggested to influence greenhouse gas (GHG) emissions. Hydrodynamics (e.g., tidal pumping) are controlling factors in short timescales (hourly/weekly) while chemical reactions become crucial in influencing DOM chemistry and related degradation rate on seasonal scales. These findings emphasize the importance of the coupling mechanism at different time scales between DOM characteristics and GHG emissions in saltmarshes.

19.
Sci Total Environ ; 904: 166843, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678524

RESUMEN

As the widespread distributed and critical zones connecting the land and ocean systems, coastal bays are special units with semi-enclosed landforms to accommodate and process dissolved organic matter (DOM) in the context of increasing anthropogenic effects globally. However, compared to other common systems that have been paid much attention to (e.g., large river estuaries, wetlands), the roles of the coastal bays in coastal carbon cycling are less explored. To fill this knowledge gap, here we combined optical techniques and ultra-high-resolution mass spectrometry to systematically investigate the DOM chemistry of the three typical coastal bays in different nutrient levels, Xiangshan Bay, Jiaozhou Bay, and Sishili Bay, in China. Results show that terrestrial signals and anthropogenic imprints were observed in these three bays to various extents. Besides, Xiangshan Bay with a higher nutrient level had the DOM characterized by lower humification and aromaticity degree than Jiaozhou Bay and Sishili Bay, which not likely mainly resulted from the differences in the primary production or photochemical processing. Further examination reveals that microbial processing likely contributes to the differences in DOM chemistry among the three bays, as indicated by different proportions of potentially transformed nitrogen-containing molecules and relative abundances of the island of stability molecules. Considering the nutrient levels in different bays, we speculate that the lower nutrient concentrations would promote the efficiency of the microbial carbon pump (MCP), which hypothesized that heterotrophic microorganisms might contribute to the formation of marine recalcitrant organic carbon. Additionally, the enrichment of oxygen-rich compounds in the unique carboxyl-rich alicyclic molecule pool of Jiaozhou Bay and Sishili Bay suggests that the efficient MCP might preferentially form them in these two bays. This study emphasizes the importance of coordinating the land and ocean systems and controlling the nutrient discharge to coastal bays, thus, to potentially promote long-term marine carbon sequestration.

20.
Water Res ; 245: 120638, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742401

RESUMEN

Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward in large estuaries, where photochemical reactions significantly influence its transformation and fate. Irradiation experiments can provide valuable information on the photochemical reactivity (photo-labile, photo-resistant, and photo-product) of molecules. However, previous research paid less attention to exploring the controls of the initial DOM chemistry to irradiation experiments and examining the applicability of their further integration with field research. Here, we conducted irradiation experiments for samples from the freshwater and seawater endmember of the Yangtze River Estuary (YRE), which receives organic matter transport from the largest river in China, the Yangtze River. Molecules that occurred before and after irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry. Results show that both post-irradiation samples have the lower aromaticity degree and reduced oxidation state, while the freshwater endmember sample exhibits more dramatic changes, indicating the controls of parent molecules to the effect of irradiation experiments. Integrating with the "molecular matching" approach, we compared the molecules occurring in field samples with the classified molecules (photo-resistant, photo-labile, and photo-product) acquired from performed irradiation experiments and correlated the relative intensity of photochemical reactivity types with salinity. When applying results from different experiments to conduct "molecular matching", the photo-resistant and photo-labile relative intensity possess consistently positive and negative trends with increasing salinity, respectively. This suggests their reliability for molecular matching applications, while the inconsistent trends for the photo-product relative intensity with salinity suggest its uncertainty in assessing the photo-induced effects. Moreover, the molecular composition within the photochemical reactivity types in field samples also evolved along the salinity gradient and showed similar trends with the DOM changes after experimental irradiation. Despite various factors influencing estimations, it is revealed that a fraction of aromatic molecules and majority of carboxyl-rich alicyclic molecules considered with biologically persistent nature in the YRE freshwater zone are simultaneously not susceptible to photochemical transformation to potentially constitute a long-term marine carbon sink. This study emphasizes the importance and limitations of the combination of field research and laboratory-controlled experiments to provide a better understanding of the crucial role of photochemical reactions in affecting carbon cycling in large estuaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...