Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.178
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715976

RESUMEN

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Asunto(s)
Macrófagos , Ratas Endogámicas SHR , Receptores Sensibles al Calcio , Animales , Receptores Sensibles al Calcio/metabolismo , Macrófagos/metabolismo , Ratas , Masculino , Remodelación Ventricular/fisiología , Miocardio/patología , Miocardio/metabolismo , Fibrosis/metabolismo , Presión Sanguínea , Ratones , Hipertensión/metabolismo , Hipertensión/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
Orthop Surg ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706035

RESUMEN

OBJECTIVES: The micro-nano structure of 3D-printed porous titanium (Ti) alloy with excellent performance in avoiding stress shielding and promoting bone tissue differentiation provides a new opportunity for the development of bone implants, but it necessitates higher requirements for bone tissue differentiation and the antibacterial properties of bone implants in clinical practice. METHODS: This study investigated the preparation, antimicrobial properties, and osteogenesis-promoting ability of the 3D printed porous Ti alloy anodic oxidized Ag-carrying (Ag@3D-TiO2) scaffolds. The 3D printed porous Ti alloy (3D-Ti), anodized 3D printed porous Ti alloy (3D-TiO2), and Ag@3D-TiO2 scaffolds were synthesized using electron beam melting. The antimicrobial properties of the scaffolds were examined using antibacterial tests and their cytocompatibility was assessed using a cell proliferation assay and acridine orange/ethidium bromide (AO/EB) staining. In vitro cellular assays were used to investigate the effects of the scaffold microstructural features on cell activity, proliferation, and osteogenesis-related genes and proteins. In vivo animal experiments were used to evaluate the anti-inflammatory and osteogenesis-promoting abilities of the scaffolds. RESULTS: The Ag@3D-TiO2 scaffolds exhibited sustained anti-microbial activity over time, enhanced cell proliferation, facilitated osteogenic differentiation, and increased extracellular matrix mineralization. In addition, alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN)-related genes and proteins were upregulated. In vivo animal implantation experiments, the anti-inflammatory effect of the Ag@3D-TiO2 scaffolds were observed using histology, and a large amount of fibrous connective tissue was present around it; the Ag@3D-TiO2 scaffolds were more bio-compatible with the surrounding tissues compared with 3D-Ti and 3D-TiO2; a large amount of uniformly distributed neoplastic bone tissue existed in their pores, and the chronic systemic toxicity test showed that the 3D-Ti, 3D-TiO2, and Ag@3D-TiO2 scaffolds are biologically safe. CONCLUSION: The goal of this study was to create a scaffold that exhibits antimicrobial properties and can aid bone growth, making it highly suitable for use in bone tissue engineering.

3.
Front Microbiol ; 15: 1364486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699479

RESUMEN

Introduction: The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods: To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion: The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.

4.
Mol Phylogenet Evol ; 196: 108072, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615706

RESUMEN

While the diversity of species formation is broadly acknowledged, significant debate exists regarding the universal nature of hybrid species formation. Through an 18-year comprehensive study of all Populus species on the Qinghai-Tibet Plateau, 23 previously recorded species and 8 new species were identified. Based on morphological characteristics, these can be classified into three groups: species in section Leucoides, species with large leaves, and species with small leaves in section Tacamahaca. By conducting whole-genome re-sequencing of 150 genotypes from these 31 species, 2.28 million single nucleotide polymorphisms (SNPs) were identified. Phylogenetic analysis utilizing these SNPs not only revealed a highly intricate evolutionary network within the large-leaf species of section Tacamahaca but also confirmed that a new species, P. curviserrata, naturally hybridized with P. cathayana, P. szechuanica, and P. ciliata, resulting in 11 hybrid species. These findings indicate the widespread occurrence of hybrid species formation within this genus, with hybridization serving as a key evolutionary mechanism for Populus on the plateau. A novel hypothesis, "Hybrid Species Exterminating Their Ancestral Species (HSEAS)," is introduced to explain the mechanisms of hybrid species formation at three different scales: the entire plateau, the southeastern mountain region, and individual river valleys.

5.
Front Bioeng Biotechnol ; 12: 1373386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605984

RESUMEN

Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.

6.
Biomed Pharmacother ; 175: 116614, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670047

RESUMEN

Pseudolaric acid B (PAB), an acid isolated from the roots of Pseudolarix kaempferi gorden, has shown antitumour effects through multiple mechanisms of action. The objective of this study was to investigate the anticancer effect of PAB on non-small cell lung cancer (NSCLC) and its underlying mechanism. In our experiments, we observed that PAB decreased cell viability, inhibited colony formation, induced cell cycle arrest, impeded scratch healing, and increased apoptosis in H1975 and H1650 cells. Additionally, PAB treatment enhanced the fluorescence intensity of MDC staining in NSCLC cells, upregulated the protein expression of microtubule-associated protein light chain 3 II (LC3 II), and downregulated the expression of sequestosome 1 (SQSTM1/P62). Combined treatment with PAB and chloroquine (CQ) increased the protein expression levels of LC3 II and P62 while decreasing the apoptosis of H1975 and H1650 cells. Moreover, treatment with PAB led to significant mTOR inhibition and AMPK activation. PAB combined with compound C (CC) inhibited autophagy and apoptosis. Furthermore, PAB treatment increased intracellular reactive oxygen species (ROS) levels in NSCLC cells, which correlated with the modulation of the AMPK/mTOR signalling pathway and was associated with autophagy and apoptosis. Finally, we validated the antitumour growth activity and mechanism of PAB in vivo using athymic nude mice bearing H1975 tumour cells. In conclusion, our findings suggest that PAB can induce apoptosis and autophagic cell death in NSCLC through the ROS-triggered AMPK/mTOR signalling pathway, making it a promising candidate for future NSCLC treatment.

7.
Angew Chem Int Ed Engl ; : e202401238, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651232

RESUMEN

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (< 10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

8.
Orthop Surg ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658320

RESUMEN

OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.

9.
Hematology ; 29(1): 2339778, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38625693

RESUMEN

OBJECTIVE: To establish an efficient nomogram model to predict short-term survival in ICU patients with aplastic anemia (AA). METHODS: The data of AA patients in the MIMIC-IV database were obtained and randomly assigned to the training set and testing set in a ratio of 7:3. Independent prognosis factors were identified through univariate and multivariate Cox regression analyses. The variance inflation factor was calculated to detect the correlation between variables. A nomogram model was built based on independent prognostic factors and risk scores for factors were generated. Model performance was tested using C-index, receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA) and Kaplan-Meier curve. RESULTS: A total of 1,963 AA patients were included. A nomogram model with 7 variables was built, including SAPS II, chronic pulmonary obstructive disease, body temperature, red cell distribution width, saturation of peripheral oxygen, age and mechanical ventilation. The C-indexes in the training set and testing set were 0.642 and 0.643 respectively, indicating certain accuracy of the model. ROC curve showed favorable classification performance of nomogram. The calibration curve reflected that its probabilistic prediction was reliable. DCA revealed good clinical practicability of the model. Moreover, the Kaplan-Meier curve showed that receiving mechanical ventilation could improve the survival status of AA patients in the short term but did not in the later period. CONCLUSION: The nomogram model of the short-term survival rate of AA patients was built based on clinical characteristics, and early mechanical ventilation could help improve the short-term survival rate of patients.


Asunto(s)
Anemia Aplásica , Humanos , Anemia Aplásica/diagnóstico , Anemia Aplásica/terapia , Nomogramas , Bases de Datos Factuales , Índices de Eritrocitos , Unidades de Cuidados Intensivos
10.
Wei Sheng Yan Jiu ; 53(2): 250-256, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604961

RESUMEN

OBJECTIVE: To compare the differences in gut microbiome composition between children with good neurodevelopment and those with delayed neurodevelopment, and to analyze the relationship between gut microbiome and the neurodevelopment status of infants in early life. METHODS: The mothers were included at the Second West China Hospital from November 2020 to April 2021. Their infant stools were collected on day 0 and day 90 after birth, and the follow-up questionnaires at the corresponding time points were completed. Additionally, the Ages and Stages Questionnaires-Third Edition(ASQ-3) were completed by mothers at 12 months of age. The structure and diversity of gut microbiota were examined by 16S rRNA sequencing, and the relationship between gut microbiome and ASQ-3 questionnaire scores in early life was analyzed. RESULTS: According to the ASQ-3 scores, mothers and infants into neurodevelopment good group(G group, n=18) and neurodevelopmental delay group(D group, n=10). Compared with the D group, the relative abundance of the Firmicutes was significantly higher in the G group at day 0(P<0.05), while the level of the Proteobacteria was lower(P<0.05). At day 90 after birth, the relative abundance of the Actinobacteria, Bifidobacteriaceae and Enterococcaceae was significantly higher in the G group(P<0.05). In addition, alpha diversity was not statistically different between the two groups. Spearman's correlation analysis showed that Clostridiaceae of the postnatal day 0 infants was positively correlated with the communication domain score, but negatively associated with gross motor domain score in children at 12 months of age, whereas the relative abundance of Proteobacteria and Enterobacteriaceae of children at postnatal day 90 was negatively associated with communication development, while the relative abundance of Erysipelatoclostridiaceae showed a negative correlation with gross motor domain scores. CONCLUSION: The structure of the gut microbiome in early life between neurodevelopment good and delayed infants, and were associated with the development of communication and gross motor domain in infants at 12 months of age, suggesting that gut microbiome in early life may be related to the level of neurodevelopment in infants.


Asunto(s)
Microbioma Gastrointestinal , Lactante , Niño , Femenino , Humanos , ARN Ribosómico 16S/genética , Madres , Bacterias/genética , Enterobacteriaceae
11.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641822

RESUMEN

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Humanos , Cromatina , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
12.
PLoS One ; 19(4): e0300441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648205

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , COVID-19 , Colangiocarcinoma , Biología Computacional , SARS-CoV-2 , Biología de Sistemas , Colangiocarcinoma/genética , Colangiocarcinoma/virología , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Biología Computacional/métodos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/virología , Biología de Sistemas/métodos , Mapas de Interacción de Proteínas/genética , Pandemias , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Betacoronavirus/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes
13.
Technol Health Care ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607773

RESUMEN

BACKGROUND: At present, there are few studies on the technical requirements of manual bedside placement of post-pyloric tube in Intensive Care Unit patients. OBJECTIVE: To investigate the application value of downward tract adherence method in the manual bedside placement of jejunal tubes. METHODS: In the downward group, 160 patients underwent manual bedside placement of jejunal tubes by a downward tract adherence method. In the conventional group, 144 patients were treated with conventional gas injection during the placement. The success rate, average time, and adverse reactions of the placement in the two groups were investigated and compared. RESULTS: The success rate of the placement in the downward group was significantly higher (95% vs. 75%, P< 0.001) and the average time for the successful placement was shortened (23 ± 5.91 min vs. 26 ± 5.49 min, P= 0.025) than that in the conventional group. No treatment-related adverse reactions occurred in either group, and there were also no significant differences in vital sign changes. CONCLUSIONS: The use of the downward tract adherence method in the manual bedside placement of postpyloric tubes for the intensive care patients at the bedside has a higher success rate, effectivity and safety.

14.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589976

RESUMEN

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Asunto(s)
Bacteriemia , Infecciones por Pasteurella , Pasteurella multocida , Enfermedades de los Roedores , Humanos , Animales , Conejos , Ratones , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología , Proteínas Proto-Oncogénicas c-akt , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/veterinaria , Pulmón/patología , Bacteriemia/veterinaria , Bacteriemia/patología , Apoptosis , Mamíferos , Proteína Forkhead Box O1
15.
Adv Healthc Mater ; : e2400150, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663034

RESUMEN

Angiogenesis is a prominent component during the highly regulated process of wound healing. The application of exogenous vascular endothelial growth factor (VEGF) has shown considerable potential in facilitating angiogenesis. However, its effectiveness is often curtailed due to chronic inflammation and severe oxidative stress in diabetic wounds. Herein, an inflammation-responsive hydrogel incorporating Prussian blue nanoparticles (PBNPs) is designed to augment the angiogenic efficacy of VEGF. Specifically, the rapid release of PBNPs from the hydrogel under inflammatory conditions effectively alleviates the oxidative stress of the wound, therefore reprogramming the immune microenvironment to preserve the bioactivity of VEGF for enhanced angiogenesis. In vitro and in vivo studies reveal that the PBNPs and VEGF co-loaded hydrogel is biocompatible and possesses effective anti-inflammatory properties, thereby facilitating angiogenesis to accelerate the wound healing process in a type 2 diabetic mouse model.

16.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38623831

RESUMEN

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Asunto(s)
Cementos para Huesos , Hidrazonas , Isoniazida , Isoniazida/química , Isoniazida/farmacología , Cementos para Huesos/química , Animales , Hidrazonas/química , Hidrazonas/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/administración & dosificación , Ratones , Liberación de Fármacos , Polimetil Metacrilato/química , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
17.
J Pers Med ; 14(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540995

RESUMEN

Rare gene variants have been found to play a role in complex disorders. Preeclampsia, and especially early-onset preeclampsia, has a strong genetic link. However, the role of rare variants in the offspring of mothers with preeclampsia remains unclear. In this study, whole-exome sequencing (WES) was used to identify rare pathogenic variants in two families with early-onset preeclampsia. Two heterozygous rare variants in CCDC7, c.625C>T (p.R209C) and c.1015C>T (p.R339X), were detected in two families and were cosegregated in the offspring of preeclamptic pregnancies. We examined the spatiotemporal expression pattern of CCDC7 in human placental villi and the effects of CCDC7 on migration and invasion of trophoblast cells JEG-3. The quantitative real-time PCR and Western blot results showed that the expression of CCDC7 in placental villi was the lowest during the first trimester and increased as the pregnancy progressed. The CCDC7 p.R339X variant showed a decrease in mRNA and protein expressions. Loss-of-function assays showed that knockdown of CCDC7 suppressed the migration and invasion of JEG-3 cells. In conclusion, CCDC7 is a potential susceptibility gene for preeclampsia, which is key for the migration and invasion of trophoblast cells. Rare variants of preeclampsia in offspring may play a crucial role in the pathogenesis of preeclampsia and require further research.

18.
Nutrients ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542758

RESUMEN

Research on regulating brain functions with probiotics and postbiotics through the gut-brain axis is attracting attention, offering the possibility of adjuvant therapy for Alzheimer's disease (AD). Three-month-old male APP/PS1 mice were gavaged with live and heat-inactivated S. thermophilus MN-002 for three months. This study demonstrated that live and heat-inactivated S. thermophilus MN-002 improved cognitive dysfunctions in APP/PS1 mice, especially in spatial memory. However, the main effects of live S. thermophilus MN-002 directly altered the intestinal microbiota composition and increased serum IL-1ß and IL-6. Heat-inactivated S. thermophilus MN-002 increased colonic propionic acid levels and enhanced the hippocampus's antioxidant capacity. Furthermore, the changes were more obvious in the high-dose group, such as astrogliosis in the hippocampus. These results indicate that different forms and doses of the same strain, S. thermophilus MN-002, can partly improve cognitive functions in AD model mice via the gut-brain axis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Masculino , Animales , Precursor de Proteína beta-Amiloide/genética , Ratones Transgénicos , Streptococcus thermophilus , Eje Cerebro-Intestino , Calor , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/uso terapéutico
19.
Microb Pathog ; 190: 106630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556102

RESUMEN

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Asunto(s)
Anticuerpos Antivirales , Proteínas de la Cápside , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacunas de Partículas Similares a Virus , Animales , Circovirus/inmunología , Circovirus/genética , Porcinos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Vacunas Virales/genética , Desarrollo de Vacunas , Antígenos Virales/inmunología , Antígenos Virales/genética , Inmunoglobulina G/sangre , Análisis Costo-Beneficio , Femenino , Interferón gamma/metabolismo , Inmunogenicidad Vacunal
20.
Am J Trop Med Hyg ; 110(4): 719-723, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442422

RESUMEN

Pregnant women and women of childbearing age were enrolled in our study and their knowledge about the Hepatitis B virus (HBV) and chronic hepatitis B (CHB) was evaluated. A questionnaire was distributed to every woman in the cross-sectional study. The questionnaire was answered by all participants before they received health education and advice about HBV and CHB from the doctors visited. Data collected from all answers were analyzed using the χ2 test and logistic regression models. A total of 206 pregnant women and women of childbearing age with CHB infection were enrolled in the study during their first visit to the Infectious Diseases Clinic of the Third Affiliated Hospital of Guangzhou Medical University. Some women of childbearing age (40.8%) and pregnant women with CHB infection (30.6%) still believed HBV could be transmitted through diet and/or mosquito bites. Some women of childbearing age and pregnant women with CHB infection had limited knowledge of the prevention of HBV transmission (111 of 206, 53.9%). Women with higher levels of education had more knowledge about HBV (senior middle school, P = 0.02; university, P <0.01). The majority of participants were willing to take antiviral medicine to decrease the mother-to-child transmission (MTCT) rate of HBV. Some women of childbearing age and/or pregnant women with CHB infection have relatively limited knowledge about HBV or CHB. This situation contributes to the timeliness, or lack thereof, of these women with CHB to see a doctor and receive antiviral therapy. As a result, the morbidity and mortality of HBV-related complications could increase along with the rate of MTCT of HBV.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Complicaciones Infecciosas del Embarazo , Femenino , Embarazo , Humanos , Hepatitis B Crónica/epidemiología , Hepatitis B Crónica/prevención & control , Mujeres Embarazadas , Estudios Transversales , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Virus de la Hepatitis B/genética , China/epidemiología , Hepatitis B/prevención & control , Antígenos de Superficie de la Hepatitis B , ADN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA