Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 24(4): 102289, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33851102

RESUMEN

Many players regulating the CD4+ T cell-mediated inflammatory response have already been identified. However, the critical nodes that constitute the regulatory and signaling networks underlying CD4 T cell responses are still missing. Using a correlation-network-guided approach, here we identified VIMP (VCP-interacting membrane protein), one of the 25 genes encoding selenoproteins in humans, as a gene regulating the effector functions of human CD4 T cells, especially production of several cytokines including IL2 and CSF2. We identified VIMP as an endogenous inhibitor of cytokine production in CD4 effector T cells via both the E2F5 transcription regulatory pathway and the Ca2+/NFATC2 signaling pathway. Our work not only indicates that VIMP might be a promising therapeutic target for various inflammation-associated diseases but also shows that our network-guided approach can significantly aid in predicting new functions of the genes of interest.

2.
Immunity ; 54(2): 291-307.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33450188

RESUMEN

The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy.


Asunto(s)
Interleucina-10/metabolismo , Linfocitos/inmunología , Rinitis Alérgica Estacional/inmunología , Inmunoterapia Sublingual/métodos , Adulto , Alérgenos/inmunología , Método Doble Ciego , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Quinasas Janus/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Persona de Mediana Edad , Efecto Placebo , Poaceae/inmunología , Polen/inmunología , Receptores Inmunológicos/metabolismo , Rinitis Alérgica Estacional/terapia , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células Th2/inmunología , Resultado del Tratamiento , Vitamina A/metabolismo , Adulto Joven
3.
NPJ Syst Biol Appl ; 6(1): 38, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173039

RESUMEN

Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.


Asunto(s)
Mitocondrias/patología , Enfermedad de Parkinson/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Enfermedad de Parkinson/genética
4.
Virus Res ; 283: 197963, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32278821

RESUMEN

Next-generation sequencing (NGS) has revolutionized the scale and depth of biomedical sciences. Because of its unique ability for the detection of sub-clonal variants within genetically diverse populations, NGS has been successfully applied to analyze and quantify the exceptionally-high diversity within viral quasispecies, and many low-frequency drug- or vaccine-resistant mutations of therapeutic importance have been discovered. Although many works have intensively discussed the latest NGS approaches and applications in general, none of them has focused on applying NGS in viral quasispecies studies, mostly due to the limited ability of current NGS technologies to accurately detect and quantify rare viral variants. Here, we summarize several error-correction strategies that have been developed to enhance the detection accuracy of minority variants. We also discuss critical considerations for preparing a sequencing library from viral RNAs and for analyzing NGS data to unravel the mutational landscape.


Asunto(s)
Variación Genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Cuasiespecies/genética , Virus/genética , Humanos , ARN Viral/genética
5.
Viruses ; 10(4)2018 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-29587397

RESUMEN

To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.


Asunto(s)
Reacciones Cruzadas/inmunología , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Dominios Proteicos/inmunología , Cuasiespecies , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/genética , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunización , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Ratones , Mutación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Conformación Proteica en Hélice alfa , Cuasiespecies/genética , Cuasiespecies/inmunología , Carga Viral
6.
NPJ Syst Biol Appl ; 4: 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423275

RESUMEN

Big data generation and computational processing will enable medicine to evolve from a "one-size-fits-all" approach to precise patient stratification and treatment. Significant achievements using "Omics" data have been made especially in personalized oncology. However, immune cells relative to tumor cells show a much higher degree of complexity in heterogeneity, dynamics, memory-capability, plasticity and "social" interactions. There is still a long way ahead on translating our capability to identify potentially targetable personalized biomarkers into effective personalized therapy in immune-centralized diseases. Here, we discuss the recent advances and successful applications in "Omics" data utilization and network analysis on patients' samples of clinical trials and studies, as well as the major challenges and strategies towards personalized stratification and treatment for infectious or non-communicable inflammatory diseases such as autoimmune diseases or allergies. We provide a roadmap and highlight experimental, clinical, computational analysis, data management, ethical and regulatory issues to accelerate the implementation of personalized immunology.

7.
Artículo en Inglés | MEDLINE | ID: mdl-27783134

RESUMEN

Identification of key genes for a given physiological or pathological process is an essential but still very challenging task for the entire biomedical research community. Statistics-based approaches, such as genome-wide association study (GWAS)- or quantitative trait locus (QTL)-related analysis have already made enormous contributions to identifying key genes associated with a given disease or phenotype, the success of which is however very much dependent on a huge number of samples. Recent advances in network biology, especially network inference directly from genome-scale data and the following-up network analysis, opens up new avenues to predict key genes driving a given biological process or cellular function. Here we review and compare the current approaches in predicting key genes, which have no chances to stand out by classic differential expression analysis, from gene-regulatory, protein-protein interaction, or gene expression correlation networks. We elaborate these network-based approaches mainly in the context of immunology and infection, and urge more usage of correlation network-based predictions. Such network-based key gene discovery approaches driven by information-enriched 'omics' data should be very useful for systematic key gene discoveries for any given biochemical process or cellular function, and also valuable for novel drug target discovery and novel diagnostic, prognostic and therapeutic-efficiency marker prediction for a specific disease or disorder.

8.
Virol J ; 11: 152, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25163480

RESUMEN

BACKGROUND: The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. RESULTS: Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, 'hidden' regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. CONCLUSIONS: Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral/fisiología , Apoptosis , Antígenos CD4/genética , Antígenos CD4/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Ciclo Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Regulación de la Expresión Génica , VIH-1 , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Acoplamiento Viral , Internalización del Virus
9.
BMC Genomics ; 15: 362, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24884510

RESUMEN

BACKGROUND: Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out. RESULTS: The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network. CONCLUSION: The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci.


Asunto(s)
Biopelículas/efectos de los fármacos , Macrólidos/farmacología , Streptococcus mutans/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cisteína/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Ligamiento Genético , Genoma Bacteriano , Glutamina/metabolismo , Datos de Secuencia Molecular , Pirimidinas/metabolismo , Alineación de Secuencia , Streptococcus mutans/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma
10.
Integr Biol (Camb) ; 6(2): 215-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413814

RESUMEN

Identification of the gene network through which Pseudomonas aeruginosa PAO1 (PA) adapts to altered oxygen-availability environments is essential for a better understanding of stress responses and pathogenicity of PA. We performed high-time-resolution (HTR) transcriptome analyses of PA in a continuous cultivation system during the transition from high oxygen tension to low oxygen tension (HLOT) and the reversed transition from low to high oxygen tension (LHOT). From those genes responsive to both transient conditions, we identified 85 essential oxygen-availability responsive genes (EORGs), including the expected ones (arcDABC) encoding enzymes for arginine fermentation. We then constructed the regulatory network for the EORGs of PA by integrating information from binding motif searching, literature and HTR data. Notably, our results show that only the sub-networks controlled by the well-known oxygen-responsive transcription factors show a very high consistency between the inferred network and literature knowledge, e.g. 87.5% and 83.3% of the obtained sub-network controlled by the anaerobic regulator (ANR) and a quorum sensing regulator RhIR, respectively. These results not only reveal stringent EORGs of PA and their transcription regulatory network, but also highlight that achieving a high accuracy of the inferred regulatory network might be feasible only for the apparently affected regulators under the given conditions but not for all the expressed regulators on a genome scale.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Pseudomonas aeruginosa/genética , ARN Bacteriano/química , ARN Bacteriano/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...