RESUMEN
Early rapid screening diagnostic assay is essential for the identification, prevention, and evaluation of many contagious or refractory diseases. The optical density transducer created by platinum nanoparticles (PtNPs) (OD-CRISPR) is reported in the present research as a cheap and easy-to-execute CRISPR/Cas12a-based diagnostic platform. The OD-CRISPR uses PtNPs, with ultra-high peroxidase-mimicking activity, to increase the detection sensitivity, thereby enabling the reduction of detection time and cost. The OD-CRISPR can be utilized to identify nucleic acid or protein biomarkers within an incubation time of 30-40min in clinical specimens. In the case of taking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene as an instance, when compared to a quantitative reverse transcription-polymerase chain reaction (RT-qPCR), the OD-CRISPR test attains a sensitivity of 79.17% and a specificity of 100%. In terms of detecting prostate-specific antigen (PSA), aptamer-based OD-CRISPR assay achieves the least discoverable concentration of 0.01 ng mL-1. In general, the OD-CRISPR can detect nucleic acid and protein biomarkers, and is a potential strategy for early rapid screening diagnostic tools.
Asunto(s)
COVID-19 , Nanopartículas del Metal , Ácidos Nucleicos , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificación de Ácido Nucleico , Platino (Metal) , SARS-CoV-2RESUMEN
The control of contagious or refractory diseases requires early, rapid diagnostic assays that are simple, fast, and easy-to-use. Here, easy-to-implement CRISPR/Cas12a-based diagnostic platform through Raman transducer generated by Raman enhancement effect, term as SERS-CRISPR (S-CRISPR), are described. The S-CRISPR uses high-activity noble metallic nanoscopic materials to increase the sensitivity in the detection of nucleic acids, without amplification. This amplification-free platform, which can be performed within 30-40 min of incubation time, is then used for detection of SARS-CoV-2 derived nucleic acids in RNA extracts obtained from nasopharyngeal swab specimens (n = 112). Compared with the quantitative reverse transcription polymerase chain reaction (RT-qPCR), the sensitivity and specificity of S-CRISPR reaches 87.50% and 100%, respectively. In general, the S-CRISPR can rapidly identify the RNA of SARS-CoV-2 RNA without amplification and is a potential strategy for nucleic acid point of care test (POCT).