Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 12087-12099, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647488

RESUMEN

Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.


Asunto(s)
Fluorocarburos , Agua , Fluorocarburos/química , Agua/química , Ratones , Animales , Neoplasias/tratamiento farmacológico , Radicales Libres/química , Humanos , Radical Hidroxilo/química , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología
2.
Adv Mater ; 36(23): e2312530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376369

RESUMEN

In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Animales , Implantes de Medicamentos/química , Liberación de Fármacos
3.
Adv Mater ; 36(11): e2311246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123765

RESUMEN

Effective treatment of deep-seated tumors relies on enhanced drug penetration in transdermal drug delivery systems. While microneedles (MNs) and iontophoresis techniques have shown improved transdermal drug delivery efficiency, challenges such as skin elasticity, high electrical resistance of the stratum corneum, and external power supply requirements hinder their efficacy in treating deep-seated tumors. In this study, a wearable, self-powered MN patch that integrates a flexible triboelectric nanogenerator (F-TENG) is presented, aimed at advancing deep-seated tumor therapy. MNs are composed of water-soluble materials mixed with negatively charged pH-responsive nanoparticles (NPs) loaded with therapeutic drugs. The F-TENG harnesses personal mechanical movements generate electrical energy. Leveraging the advantages of both MNs and F-TENG, therapeutic NPs can penetrate deep skin locations upon MN patch insertion, releasing drugs rapidly in acidic tumor tissues. Owing to these features, a single administration of the integrated MN-patch in a mouse model with deep-seated melanoma exhibits superior therapeutic efficacy in inhibiting deep-located tumor compared to using the MN-patch alone, indicating promising potential for treating tumors at deep sites.


Asunto(s)
Melanoma , Dispositivos Electrónicos Vestibles , Animales , Ratones , Melanoma/tratamiento farmacológico , Agujas , Administración Cutánea , Piel , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...