Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513102

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Asunto(s)
Empalme Alternativo , Benzopiranos , Receptor beta de Estrógeno , Estructuras R-Loop , Factor de Empalme U2AF , Neoplasias de la Mama Triple Negativas , Humanos , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Factor de Empalme U2AF/química , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Empalme Alternativo/efectos de los fármacos , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Unión Proteica , Sitios de Unión
3.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735502

RESUMEN

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo
4.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410725

RESUMEN

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Asunto(s)
Síndrome de Down , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Síndrome de Down/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neuronas/metabolismo
5.
PNAS Nexus ; 2(5): pgad135, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37152679

RESUMEN

Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) encodes tens of thousands of cell recognition molecules via alternative splicing, which are required for neural function. A canonical self-avoidance model seems to provide a central mechanistic basis for Dscam1 functions in neuronal wiring. Here, we reveal extensive noncanonical functions of Dscam1 isoforms in neuronal wiring. We generated a series of allelic cis mutations in Dscam1, encoding a normal number of isoforms, but with an altered isoform composition. Despite normal dendritic self-avoidance and self-/nonself-discrimination in dendritic arborization (da) neurons, which is consistent with the canonical self-avoidance model, these mutants exhibited strikingly distinct spectra of phenotypic defects in the three types of neurons: up to ∼60% defects in mushroom bodies, a significant increase in branching and growth in da neurons, and mild axonal branching defects in mechanosensory neurons. Remarkably, the altered isoform composition resulted in increased dendrite growth yet inhibited axon growth. Moreover, reducing Dscam1 dosage exacerbated axonal defects in mushroom bodies and mechanosensory neurons but reverted dendritic branching and growth defects in da neurons. This splicing-tuned regulation strategy suggests that axon and dendrite growth in diverse neurons cell-autonomously require Dscam1 isoform composition. These findings provide important insights into the functions of Dscam1 isoforms in neuronal wiring.

6.
J Genet Genomics ; 50(3): 163-177, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473687

RESUMEN

Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.


Asunto(s)
Proteínas de Drosophila , Proteínas Activadoras de GTPasa , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Transducción de Señal/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Superficie Celular
7.
Sci Adv ; 8(4): eabm1763, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080968

RESUMEN

Drosophila melanogaster Dscam1 encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of Dscam1 splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site-selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site-selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site-selector and balancer pairings, which counteracts the "first-come, first-served" principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.

8.
Int J Biol Macromol ; 183: 379-386, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33864868

RESUMEN

In the adaptation stage of CRISPR-Cas systems, the Cas1-Cas2 integrase captures and integrates new invader-derived spacers into the CRISPR locus, serving as a molecular memory of prior infection. As of yet, the structural information of Cas1-Cas2 complex is available only for two species. Here we present the crystal structure of Cas1-Cas2 complex of Pyrococcus furiosus, which showed a distinct architecture from the known Cas1-Cas2 complexes. The shorter C-terminal tail of Pfu Cas2 directs the Cas1 dimers go in the opposite direction, resulting in a different prespacer binding mode. Based on our structural and mutagenesis results, we modeled a prespacer with a shorter duplex and longer 3' overhangs to bind Pfu Cas1-Cas2 complex. The prespacer preference was confirmed by EMSA, fluorescence polarization, and in vitro integration assays. This model provides a potential explanation for the longer spacer acquisition observed in P. furiosus when deleting both cas4 genes. Our study highlights the diversity of the CRISPR adaptation module.


Asunto(s)
Sistemas CRISPR-Cas/genética , Pyrococcus furiosus/genética
9.
Nucleic Acids Res ; 49(5): 2973-2984, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33619565

RESUMEN

CRISPR-Cas immune systems process and integrate short fragments of DNA from new invaders as spacers into the host CRISPR locus to establish molecular memory of prior infection, which is also known as adaptation in the field. Some CRISPR-Cas systems rely on Cas1 and Cas2 to complete the adaptation process, which has been characterized in a few systems. In contrast, many other CRISPR-Cas systems require an additional factor of Cas4 for efficient adaptation, the mechanism of which remains less understood. Here we present biochemical reconstitution of the Synechocystis sp. PCC6803 type I-D adaptation system, X-ray crystal structures of Cas1-Cas2-prespacer complexes, and negative stained electron microscopy structure of the Cas4-Cas1 complex. Cas4 and Cas2 compete with each other to interact with Cas1. In the absence of prespacer, Cas4 but not Cas2 assembles with Cas1 into a very stable complex for processing the prespacer. Strikingly, the Cas1-prespacer complex develops a higher binding affinity toward Cas2 to form the Cas1-Cas2-prespacer ternary complex for integration. Together, we show a two-step sequential assembly mechanism for the type I-D adaptation module of Synechocystis, in which Cas4-Cas1 and Cas1-Cas2 function as two exclusive complexes for prespacer processing, capture, and integration.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Synechocystis/genética , Cristalografía por Rayos X , ADN/química , Modelos Moleculares
10.
Cell ; 162(5): 1140-54, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317474

RESUMEN

Axonal branching contributes substantially to neuronal circuit complexity. Studies in Drosophila have shown that loss of Dscam1 receptor diversity can fully block axon branching in mechanosensory neurons. Here we report that cell-autonomous loss of the receptor tyrosine phosphatase 69D (RPTP69D) and loss of midline-localized Slit inhibit formation of specific axon collaterals through modulation of Dscam1 activity. Genetic and biochemical data support a model in which direct binding of Slit to Dscam1 enhances the interaction of Dscam1 with RPTP69D, stimulating Dscam1 dephosphorylation. Single-growth-cone imaging reveals that Slit/RPTP69D are not required for general branch initiation but instead promote the extension of specific axon collaterals. Hence, although regulation of intrinsic Dscam1-Dscam1 isoform interactions is essential for formation of all mechanosensory-axon branches, the local ligand-induced alterations of Dscam1 phosphorylation in distinct growth-cone compartments enable the spatial specificity of axon collateral formation.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Animales , Moléculas de Adhesión Celular , Drosophila melanogaster/citología , Conos de Crecimiento/metabolismo
11.
Development ; 142(2): 394-405, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25503410

RESUMEN

Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Imagenología Tridimensional/métodos , Mecanorreceptores/citología , Microscopía Electrónica de Rastreo/métodos , Genética Inversa/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Drosophila , Inmunohistoquímica , Interferencia de ARN
12.
Science ; 344(6188): 1182-6, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24831526

RESUMEN

The isoform diversity of the Drosophila Dscam1 receptor is important for neuronal self-recognition and self-avoidance. A canonical model suggests that homophilic binding of identical Dscam1 receptor isoforms on sister dendrites ensures self-avoidance even when only a single isoform is expressed. We detected a cell-intrinsic function of Dscam1 that requires the coexpression of multiple isoforms. Manipulation of the Dscam1 isoform pool in single neurons caused severe disruption of collateral formation of mechanosensory axons. Changes in isoform abundance led to dominant dosage-sensitive inhibition of branching. We propose that the ratio of matching to nonmatching isoforms within a cell influences the Dscam1-mediated signaling strength, which in turn controls axon growth and growth cone sprouting. Cell-intrinsic use of surface receptor diversity may be of general importance in regulating axonal branching during brain wiring.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Isoformas de Proteínas/fisiología , Alelos , Animales , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dosificación de Gen , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Isoformas de Proteínas/genética , Interferencia de ARN
13.
Dev Biol ; 382(1): 209-23, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23886579

RESUMEN

The gooseberry locus of Drosophila consists of two homologous Pax genes, gooseberry neuro (gsbn) and gooseberry (gsb). Originally characterized by genetics as a single segment-polarity gene, its role in segmentation has been enigmatic, as only deficiencies uncovering both genes showed a strong segmentation phenotype while mutants of gsb did not. To solve this conundrum and assay for differential roles of gsbn and gsb, we have obtained by homologous recombination for the first time null mutants of either gene as well as a deficiency inactivating only gsbn and gsb. Our analysis shows that (i) gsbn null mutants are subviable while all surviving males and most females are sterile; (ii) gsb and gsbn share overlapping functions in segmentation and the CNS, in which gsbn largely, but not completely depends on the transcriptional activation by the product of gsb; (iii) as a consequence, in the absence of gsbn, gsb becomes haploinsufficient for its function in the CNS, and gsbn(-/-)gsb(-/+) mutants die as larvae. Such mutants display defects in the proper specification of the SNa branch of the segmental nerve, which appears intact in gsbn(-/-) mutants. Lineage analysis in the embryonic CNS showed that gsbn is expressed in the entire lineage derived from NB5-4, which generates 4 or 5 motoneurons whose axons are part of the SNa branch and all of which except one also express BarH1. Analysis of gsbn(-/-)gsb(-/+) clones originating from NB5-4 further suggests that gsb and gsbn specify the SNa fate and concomitantly repress the SNc fate in this lineage and that their products activate BarH1 transcription. Specification of the SNa fate by Gsb and Gsbn occurs mainly at the NB and GMC stage. However, the SNa mutant phenotype can be rescued by providing Gsbn as late as at the postmitotic stage. The hierarchical relationship between gsb and gsbn, the haploinsufficiency of gsb in gsbn mutants, and their redundant roles in the epidermis and CNS are discussed. A model is proposed how selection for both genes occurred after their duplication during evolution.


Asunto(s)
Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Alelos , Animales , Axones/metabolismo , Linaje de la Célula/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos/genética , Genoma/genética , Haploinsuficiencia/genética , Proteínas de Homeodominio/genética , Masculino , Mitosis , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Músculos/inervación , Músculos/metabolismo , Músculos/patología , Mutación/genética , Proteínas Nucleares/genética , Fenotipo , Transducción de Señal/genética , Análisis de Supervivencia , Transactivadores/genética
14.
EMBO J ; 32(14): 2029-38, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23792425

RESUMEN

The Drosophila melanogaster gene Dscam (Down syndrome cell adhesion molecule) can generate thousands of different ectodomains via mutual exclusive splicing of three large exon clusters. The isoform diversity plays a profound role in both neuronal wiring and pathogen recognition. However, the isoform expression pattern at the global level remained unexplored. Here, we developed a novel method that allows for direct quantification of the alternatively spliced exon combinations from over hundreds of millions of Dscam transcripts in one sequencing run. With unprecedented sequencing depth, we detected a total of 18,496 isoforms, out of 19,008 theoretically possible combinations. Importantly, we demonstrated that alternative splicing between different clusters is independent. Moreover, the isoforms were expressed across a broad dynamic range, with significant bias in cell/tissue and developmental stage-specific patterns. Hitherto underappreciated, such bias can dramatically reduce the ability of neurons to display unique surface receptor codes. Therefore, the seemingly excessive diversity encoded in the Dscam locus might nevertheless be essential for a robust self and non-self discrimination in neurons.


Asunto(s)
Empalme Alternativo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animales , Drosophila melanogaster/crecimiento & desarrollo , Exones , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de ARN/métodos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA