Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299600

RESUMEN

The insulin-like growth factor 1 receptor (IGF1R) was recognized as a pivotal receptor that facilitated the cellular entry of RSV. Small molecule inhibitors designed to target IGF1R exhibited potential as potent antiviral agents. Through virtual screening, we conducted a screening process involving small molecule compounds derived from natural products, aiming to target the IGF1R protein against respiratory syncytial virus infection. The molecular dynamics simulation analysis showed that tannic acid and daptomycin interacted with the IGF1R. The experimental results in vivo and in vitro showed that tannic acid and daptomycin had anti-RSV infection potential through reducing viral loads, inflammation, airway resistance and protecting alveolar integrity. The CC50 values of tannic acid and daptomycin were 6 nM and 0.45 µM, respectively. Novel small-molecule inhibitors targeting the IGF1R, tannic acid and daptomycin, may be effective anti-RSV therapy agents. This study may in future broaden the arsenal of therapeutics for use against RSV infection and lead to more effective care against the virus.Communicated by Ramaswamy H. Sarma.

2.
J Med Virol ; 95(1): e28352, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437481

RESUMEN

Lots of epidemiological and clinical studies have shown that human cytomegalovirus (HCMV) is related to the pathogenesis of atherosclerosis. Released by inflammatory cells and vascular smooth muscle cell (VSMCs), metalloproteinases are observed in many pathological vessel conditions, including atherosclerosis and restenosis. This study was designed to investigate the effect of HCMV infection on the expression of metalloproteinases and their involvements in the HCMV-induced functional changes of VSMCs. Differential metalloproteinase after HCMV infection was assayed using reverse transcription-polymerase chain reaction (RT-PCR) microarray. The most significant increased a disintegrin and metalloprotease 9 (ADAM9) was chosen to investigate the mechanism of its specific increase after infection using the treatment of UV-irradiated replication-deficient HCMV, HCMV-infected cell lysate filters or Foscarnet. The function of proliferation, migration, production of inflammatoty factors and phenotypic transformation were determined by using cell counting kit-8, transwell, Enzyme-linked immunosorbent assay, RT-quantitative PCR (qPCR) and Western blot, respectively. Moreover, the effect of ADAM9 deficiency on HCMV replication was also determined using RT-qPCR and immunofluorescence. The expression levels of 6 genes were upregulated and 14 genes were downregulated at different time points after HCMV infection. Among these, the expression level of ADAM9 increased most significantly at each time point and the abnormal expression of ADAM9 might be induced by the early gene products of HCMV. Further studies found that ADAM9 promoted the proliferation, the migration, the production of inflammatory factors and the transit from the contractile phenotype (decreased ACTA2 expression) to the synthetic phenotype (increased osteopontin [OPN] expression). Knockdown theADAM9 expression could rescue the decreased ACTA2 expression, but has no effect on OPN expression. ADAM-9 deficiency didn't affect the replication of HCMV. The findings of our study suggest that HCMV infection changed VSMC function through ADAM9 expression, which may contribute to the understanding of the underlying pathological mechanisms of HCMV-induced atherosclerosis.


Asunto(s)
Aterosclerosis , Miocitos del Músculo Liso , Humanos , Miocitos del Músculo Liso/metabolismo , Citomegalovirus/genética , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Proliferación Celular , Movimiento Celular/genética , Células Cultivadas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo
3.
J Immunol Res ; 2022: 8307280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528611

RESUMEN

Objective: From our previous study, we obtained long noncoding RNA (lncRNA) STAT4-AS1, which is related to asthma through high-throughput screening. However, we could not determine the specific mechanism involved and in response to this. We further designed this study. Results: First, we found that lncRNA STAT4-AS1 was downregulated in T cells from patients with asthma when compared to healthy controls. Next, we confirmed that lncRNA STAT4-AS1 was significantly negatively correlated with T helper 17 (TH17) differentiation in vitro experiments. The decreases of STAT4-AS1 promoted TH17 differentiation, while the increases of STAT4-AS1 inhibited TH17 differentiation. Subsequently, through RNA pull-down, RNA-binding protein immunoprecipitation (RIP), and dual luciferase reporter assay, we found that STAT4-AS1 could inhibit the binding of retinoid-related orphan receptor-γt (RORγt) protein with an IL-17A promoter after binding with RORγt protein. Fluorescence in situ hybridization (FISH) and nuclear-cytoplasmic separation assay showed that STAT4-AS1 is bonded to RORγt in the cytoplasm, preventing RORγt from entering the nucleus. Conclusion: Overall, STAT4-AS1 directly targets RORγt protein, inhibits the mutual binding of RORγt and IL-17 gene promoter, and eventually inhibits TH17 differentiation. To this end, STAT4-AS1 as a potential target may confer applications in the clinical treatment and diagnosis of TH17-related diseases.


Asunto(s)
Asma , ARN Largo no Codificante , Asma/metabolismo , Diferenciación Celular/genética , Humanos , Hibridación Fluorescente in Situ , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Factor de Transcripción STAT4/genética , Células Th17/metabolismo
4.
J Clin Lab Anal ; 34(1): e23126, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31774217

RESUMEN

BACKGROUND: Six Sigma methodology with a zero-defect goal has long been applied in commercial settings and was utilized in this study to assure/improve the quality of various analytes. METHODS: Daily internal quality control (QC) and external quality assessment data were collected and analyzed by calculating the sigma (σ) values for 19 analytes based on the coefficient of variation, bias, and total error allowable. Standardized QC sigma charts were established with these parameters. Quality goal index (QGI) analysis and root cause analysis (RCA) were used to discover potential problems for the analytes. RESULTS: Five analytes with σ ≥ 6 achieved world-class performance, and only the Westgard rule (13s ) with one control measurement at two QC material levels (N2) per QC event and a run size of 1000 patient samples between QC events (R1000) was needed for QC. In contrast, more control rules (22s /R4s /41s ) along with high N values and low R values were needed for quality assurance for five analytes with 4 ≤ σ < 6. However, the sigma levels of nine analytes were σ < 4 at one or more QC levels, and a more rigorous QC procedure (13s /22s /R4s /41s /8x with N4 and R45) was implemented. The combination of QGI analysis and RCA further revealed inaccuracy or imprecision problems for these analytes with σ < 4 and discovered five aspects of potential causes considered for quality improvement. CONCLUSIONS: Six Sigma methodology is an effective tool for evaluating the performance of biochemical analytes and is conducive to quality assurance and improvement.


Asunto(s)
Bioquímica/métodos , Bioquímica/normas , Gestión de la Calidad Total , Humanos , Control de Calidad , Estándares de Referencia , Análisis de Causa Raíz
5.
Neural Comput ; 24(1): 217-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21851279

RESUMEN

Synchronization of cellular neural networks with time-varying delay is discussed in this letter. Based on Razumikhin theorem, a guaranteed cost synchronous controller is given. Unlike Lyapunov-Krasovskii analysis process, there is no constraint on the change rate of time delay. The saturated terms emerging in the Razumikhin analysis are amplified by zoned discussion and maximax synthesis rather than by Lipschitz condition and vector inequality, which will bring more conservatism. Then the controller criterion is transformed from quadratic matrix inequality form into linear matrix inequality form, with the help of a sufficient and necessary transformation condition. The minimization of the guaranteed cost is studied, and a further criterion for getting the controller is presented. Finally, the guaranteed cost synchronous control and its corresponding minimization problem are illustrated with examples of chaotic time-varying delay cellular neural networks.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Simulación por Computador , Dinámicas no Lineales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...