Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Agric Food Chem ; 72(33): 18423-18433, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106460

RESUMEN

Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 µg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.


Asunto(s)
4-Butirolactona , Antivirales , Podofilotoxina , Virus del Mosaico del Tabaco , Podofilotoxina/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Virus del Mosaico del Tabaco/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Protección de Cultivos , Cristalografía por Rayos X , Relación Estructura-Actividad , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Nicotiana/virología , Simulación del Acoplamiento Molecular
2.
Curr Drug Targets ; 25(3): 171-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213163

RESUMEN

There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.


Asunto(s)
Hepatopatías , Fosfoproteínas Fosfatasas , Humanos , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Hepatopatías/tratamiento farmacológico , Hepatopatías/enzimología , Hepatopatías/metabolismo , Enfermedad Crónica , Transducción de Señal/efectos de los fármacos , Animales , Terapia Molecular Dirigida , Fosforilación , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología
3.
Bioorg Chem ; 142: 106925, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890213

RESUMEN

Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Matrinas , Triglicéridos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Ratones Endogámicos C57BL
4.
Pest Manag Sci ; 79(12): 5015-5028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37544900

RESUMEN

BACKGROUND: Plant diseases caused by phytopathogenic fungi and oomycetes pose a serious threat to ensuring crop yield and quality. Finding novel fungicidal candidates based on natural products is one of the critical methods for developing effective and environmentally friendly pesticides. In this study, a series of salicylaldehyde derivatives containing an α-methylene-γ-butyrolactone moiety were designed, synthesized, and their fungicidal activities were evaluated. RESULTS: The bioassay studies indicated that compound C3 displayed an excellent in vitro activity against Rhizoctonia solani with a half-maximal effective concentration (EC50 ) value of 0.65 µg/mL, higher than that of pyraclostrobin (EC50 = 1.44 µg/mL) and comparable to that of carbendazim (EC50 = 0.33 µg/mL). For Valsa mali and Phytophthora capsici, compound C3 also showed good fungicidal activities with EC50 values of 0.91 and 1.33 µg/mL, respectively. In addition, compound C3 exhibited promising protective in vivo activity against R. solani (84.1%) at 100 µg/mL, which was better than that of pyraclostrobin (78.4%). The pot experiment displayed that compound C3 had 74.8% protective efficacy against R. solani at 200 µg/mL, which was comparable to that of validamycin (78.2%). The antifungal mode of action research indicated that compound C3 could change the mycelial morphology and ultrastructure, increase cell membrane permeability, affect respiratory metabolism by binding to complex III, and inhibit the germination and formation of sclerotia, thereby effectively controlling the disease. CONCLUSION: The present study provides support for the application of these salicylaldehyde derivatives as promising potential pesticides with remarkable and broad-spectrum fungicidal activities against phytopathogenic fungi and oomycetes in crop protection. © 2023 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Relación Estructura-Actividad , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Antifúngicos/farmacología , Antifúngicos/química
5.
J Agric Food Chem ; 71(28): 10798-10808, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37418668

RESUMEN

Natural products have been a valuable source of efficient and low-risk pesticides. In this work, a series of novel sesamolin derivatives A0-A31 and B0-B4 were designed and synthesized via structural simplification of furofuran lignan phrymarolin II, and their antiviral and antibacterial activities were systematically evaluated. The bioassay results showed that compound A24 displayed remarkable inactivation activity against tobacco mosaic virus (TMV) with an EC50 value of 130.4 µg/mL, which was superior to that of commercial ningnanmycin (EC50 = 202.0 µg/mL). The antiviral mode of action assays suggested that compound A24 may obstruct self-assembly by binding to TMV coat protein (CP), thus resisting the TMV infection. In addition, compound A25 possessed prominent antibacterial activities, especially against Ralstonia solanacearum with an EC50 value of 43.8 µg/mL, which is better than those of commercial bismerthiazol and thiodiazole copper. This research lays a solid foundation for the utilization of furofuran lignans in crop protection.


Asunto(s)
Lignanos , Virus del Mosaico del Tabaco , Relación Estructura-Actividad , Antibacterianos/química , Lignanos/farmacología , Lignanos/metabolismo , Antivirales/química , Diseño de Fármacos
6.
Phytother Res ; 37(9): 3898-3912, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37132081

RESUMEN

Liver fibrosis is a key global health care burden. Sclareol, isolated from Salvia sclarea, possesses various biological activities. Its effect on liver fibrosis remains unknown. This study was proposed to evaluate the antifibrotic activity of sclareol (SCL) and explore its underlying mechanisms. Stimulated hepatic stellate cells served as an in vitro liver fibrosis model. The expression of fibrotic markers was assessed by western blot and real-time PCR. Two classical animal models, bile duct-ligated rats and carbon tetrachloride-treated mice, were utilized for the in vivo experiments. The liver function and fibrosis degree were determined by serum biochemical and histopathological analyses. VEGFR2 SUMOylation was analyzed using coimmunoprecipitation assay. Our results indicated that SCL treatment restricted the profibrotic propensity of activated HSCs. In fibrotic rodents, SCL administration alleviated hepatic injury and reduced collagen accumulation. Mechanistic studies indicated that SCL downregulated the protein level of SENP1 and enhanced VEGFR2 SUMOylation in LX-2 cells, which affected its intracellular trafficking. Blockade of the interaction between VEGFR2 and STAT3 was observed, resulting in the suppression of downstream STAT3 phosphorylation. Our findings demonstrated that SCL has therapeutic efficacy against liver fibrosis through mediating VEGFR2 SUMOylation, suggesting that SCL may be a potential candidate compound for its treatment.


Asunto(s)
Cirrosis Hepática , Sumoilación , Ratas , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Hígado , Transducción de Señal , Fibrosis , Células Estrelladas Hepáticas
7.
Rev Cardiovasc Med ; 24(1): 31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39076862

RESUMEN

Background: To assess the effectiveness of the nurse-led individualised self-care model on myocardial infarction (MI) patients with diabetes. Methods: A total of 120 MI patients were enrolled from May 2020 to December 2021. The intervention group received the nurse-led individualised self-care model (n = 60), whereas the control group only received routine health education (n = 60). The Myocardial Infarction Dimensional Assessment Scale (MIDAS), Coronary Heart Disease Self-Management Behavior Scale (CSMS), Self-Rated Abilities for Health Practices (SRAHP) scale, General Self-Efficacy Scale (GSES), Hospital Anxiety and Depression Scale (HADS), blood glucose and nursing satisfaction in both groups were observed and recorded. Results: The six MIDAS subscales except for insecurity, and all dimensions of the CSMS, SRAHP, GSES and HADS scores, of the intervention group were significantly improved compared to those of the control group (p < 0.05). Compared with the control group (5.69 ± 1.43 mmol/L), the intervention group showed a decrease in the serum levels of fasting blood glucose (4.83 ± 1.57 mmol/L; p < 0.01). Conclusions: Our pilot study provides preliminary evidence supporting the feasibility of implementing nurse-led individualised self-care, suggesting its preliminary effects in improving health-related quality of life, self-care ability, health behaviours, self-efficacy, social support and nursing satisfaction among MI patients with diabetes. However, considering the unblinded and pilot nature of this study, these positive results should be interpreted with caution. Clinical Trial Registration: OSF Registration number: DOI 10.17605/OSF.IO/DVW95 (https://archive.org/details/osf-registrations-dvw95-v1).

8.
Life Sci ; 310: 121109, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270426

RESUMEN

The organic solute transporter α-ß (OSTα-OSTß) is a heteromeric transporter localized to the basolateral membranes of liver, intestinal, and kidney epithelial cells and functions to extrude bile acids and steroids from these tissues. OSTα-OSTß expression is variable among species and tissues. This transporter plays important roles in maintaining BA homeostasis and may correlate with the progression of diseases relevant to cholestasis or BA malabsorption. Crosstalk between multiple nuclear receptors and cytokines reveals a more intricate means of regulating OSTα-OSTß. Human OSTα/ß and mouse Ostα/ß promoters are endowed with binding sites for several transcription factors. This review aims to uncover the current regulatory mechanism of OSTα-OSTß, explain the rationale underlying this approach and provide practical evidence. Therapeutic strategies targeting OSTα-OSTß or its upstream regulators may be essential to correct abnormal BA levels and intervene in the progression of diseases relevant to the disturbance of BA homeostasis.


Asunto(s)
Ácidos y Sales Biliares , Proteínas de Transporte de Membrana , Animales , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo
9.
J Agric Food Chem ; 70(33): 10316-10325, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35960686

RESUMEN

On the basis of the structure of nicotlactone A (L1), a series of novel α-methylene-γ-butyrolactone derivatives B1-B43 were designed and synthesized by structure simplification and active fragment replacement strategies, and their antiviral and antifungal activities were evaluated. The bioassay studies indicated that many target compounds possessed good to excellent antiviral activity against tobacco mosaic virus (TMV) and some of these compounds exhibited specific antifungal activities against Valsa mali and Fusarium graminearum. Compound B32 exhibited the best anti-TMV activity (inactivation effect, 88.9%; protection effect, 65.8%; curative effect, 52.8%) in vivo at 500 mg/L, which is significantly higher than that of commercial virucides ribavirin and ningnanmycin. The inhibition effect of compound B32 was also visualized by the inoculation test using green fluorescent protein (GFP)-labeled TMV. The preliminary antiviral mechanism of compound B32 was investigated. Transmission electron microscopy (TEM) showed that compound B32 could destroy the integrity of virus particles. Then, molecular docking and isothermal titration calorimetry (ITC) analysis further demonstrated that compound B32 exhibited a strong binding affinity to the TMV coat protein with a dissociation constant (Kd) of 3.06 µM, superior to ribavirin. Thus, we deduced that compound B32 may interfere with the self-assembly of TMV particles by binding TMV coat protein (CP). In addition, compound B28 showed good in vitro activity against F. graminearum with an inhibition rate of 90.9% at 50 mg/L, which was greater than that of fluxapyroxad (59.1%) but lower than that of the commercial fungicide carbendazim (96.8%). The present study provides support for the application of these α-methylene-γ-butyrolactone derivatives as novel antiviral and antifungal agents in crop protection.


Asunto(s)
Antifúngicos , Virus del Mosaico del Tabaco , 4-Butirolactona/análogos & derivados , Antifúngicos/química , Antifúngicos/farmacología , Antivirales/química , Antivirales/farmacología , Benzaldehídos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Ribavirina/farmacología , Relación Estructura-Actividad
10.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890729

RESUMEN

Meltblown (MB) nonwovens as air filter materials have played an important role in protecting people from microbe infection in the COVID-19 pandemic. As the pandemic enters the third year in this current global event, it becomes more and more beneficial to develop more functional MB nonwovens with special surface selectivity as well as antibacterial activities. In this article, an antibacterial polypropylene MB nonwoven doped with nano silicon nitride (Si3N4), one of ceramic materials, was developed. With the introduction of Si3N4, both the average diameter of the fibers and the pore diameter and porosity of the nonwovens can be tailored. Moreover, the nonwovens having a single-side moisture transportation, which would be more comfortable in use for respirators or masks, was designed by imparting a hydrophobicity gradient through the single-side superhydrophobic finishing of reactive organic/inorganic silicon coprecipitation in situ. After a nano/micro structural SiO2 precipitation on one side of the fabric surfaces, the contact angles were up to 161.7° from 141.0° originally. The nonwovens were evaluated on antibacterial activity, the result of which indicated that they had a high antibacterial activity when the dosage of Si3N4 was 0.6 wt%. The bacteriostatic rate against E. coli and S. aureus was up to over 96%. Due to the nontoxicity and excellent antibacterial activity of Si3N4, this MB nonwovens are promising as a high-efficiency air filter material, particularly during the pandemic.

11.
Bioorg Chem ; 127: 105971, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749855

RESUMEN

Liver fibrosis is an important process in chronic liver disease and is strongly related to poor prognosis. Dehydromevalonolactone (C8) is a natural product isolated from a fungus of Fusarium sp. CPCC 401218, and its pharmacological activity has never been reported before. In this study, the potential of C8 as an anti-hepatic fibrosis agent was investigated. In human hepatic stellate cell (HSC) line LX-2, C8 suppressed the increased expression of COL1A1 and α-SMA induced by TGFß1, which indicated that C8 could repress the activation of HSCs. In bile duct ligated rats, C8 administration (100 mg/kg, i.p.) markedly attenuated liver injury, fibrosis, and inflammation, and suppressed the expression of the macrophage surface marker F4/80. In terms of mechanism, C8 treatment blocked the activation of the NLRP3 inflammasome, which was stimulated by LPS and nigericin in bone marrow-derived macrophages (BMDMs) and companied by the release of active IL-1ß. In addition, the activation of LX-2 cells induced by IL-1ß released from BMDMs was also inhibited after C8 administration, which indicated that C8 repressed HSCs activation by inhibiting the activation of NLRP3 inflammasome in macrophages. Furthermore, C8 exhibited the effects of anti-fibrosis and inhibiting the expression of NLRP3 inflammasome in non-alcoholic steatohepatitis (NASH) mice. Finally, C8 can be commendably absorbed in vivo and was safe for mice at the concentration of 1000 mg/kg (p.o.). In summary, our study reveals that C8 ameliorates HSCs activation and liver fibrosis in cholestasis rats and NASH mice by inhibiting NLRP3 inflammasome in macrophages, and C8 might be a safe and effective candidate for the treatment of liver fibrosis.


Asunto(s)
Inflamasomas , Ácido Mevalónico/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico , Animales , Fibrosis , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ácido Mevalónico/análisis , Ácido Mevalónico/farmacología , Ácido Mevalónico/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratas
12.
J Nat Prod ; 84(11): 2937-2944, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730370

RESUMEN

Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.


Asunto(s)
Antivirales/síntesis química , Lignanos/síntesis química , Virus del Mosaico del Tabaco/efectos de los fármacos , Antivirales/farmacología , Benzodioxoles , Lignanos/farmacología
13.
Bioorg Med Chem ; 49: 116438, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610571

RESUMEN

Liver fibrosis is one of the most common pathological consequences of chronic liver diseases (CLD). To develop effective antifibrotic strategies, a novel class of 1-(substituted phenyl)-1,8-naphthalidine-3-carboxamide derivatives were designed and synthesized. By means of the collagen type I α 1 (COL1A1)-based screening and cytotoxicity assay in human hepatic stellate cell (HSC) line LX-2, seven compounds were screened out from total 60 derivatives with high inhibitory effect and relatively low cytotoxicity for further COL1A1 mRNA expression analysis. It was found that compound 17f and 19g dose-dependently inhibited the expression of fibrogenic markers, including α-smooth muscle actin (α-SMA), matrix metalloprotein 2 (MMP-2), connective tissue growth factor (CTGF) and transforming growth factor ß1 (TGFß1) on both mRNA and protein levels. Further mechanism studies indicated that they might suppress the hepatic fibrogenesis via inhibiting both PI3K/AKT/Smad and non-Smad JAK2/STAT3 signaling pathways. Furthermore, 19g administration attenuated hepatic histopathological injury and collagen accumulation, and reduced fibrogenesis-associated protein expression in liver tissues of bile duct ligation (BDL) rats, showing significant antifibrotic effect in vivo. These findings identified 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents, and provided valuable information for further structure optimization.


Asunto(s)
1-Naftilamina/farmacología , Descubrimiento de Drogas , Cirrosis Hepática/tratamiento farmacológico , 1-Naftilamina/síntesis química , 1-Naftilamina/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/metabolismo , Relación Estructura-Actividad
14.
Acta Pharmacol Sin ; 42(11): 1808-1820, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465912

RESUMEN

Liver fibrosis is one of the most severe pathologic consequences of chronic liver diseases, and effective therapeutic strategies are urgently needed. Proton pump inhibitors (PPIs) are H+/K+-ATPase inhibitors and currently used to treat acid-related diseases such as gastric ulcers, which have shown other therapeutic effects in addition to inhibiting acid secretion. However, few studies have focused on PPIs from the perspective of inhibiting hepatic fibrosis. In the present study, we investigated the effects of pantoprazole (PPZ), a PPI, against liver fibrosis in a bile duct ligation (BDL) rat model, human hepatic stellate cell (HSC) line LX-2 and mouse primary HSCs (pHSCs), and explored the potential mechanisms underlying the effects of PPZ in vitro and in vivo. In BDL rats, administration of PPZ (150 mg· kg-1· d-1, i.p. for 14 d) significantly attenuated liver histopathological injury, collagen accumulation, and inflammatory responses, and suppressed fibrogenesis-associated gene expression including Col1a1, Acta2, Tgfß1, and Mmp-2. In LX-2 cells and mouse pHSCs, PPZ (100-300 µM) dose-dependently suppressed the levels of fibrogenic markers. We conducted transcriptome analysis and subsequent validation in PPZ-treated LX-2 cells, and revealed that PPZ inhibited the expression of Yes-associated protein (YAP) and its downstream targets such as CTGF, ID1, survivin, CYR61, and GLI2. Using YAP overexpression and silencing, we demonstrated that PPZ downregulated hepatic fibrogenic gene expression via YAP. Furthermore, we showed that PPZ promoted the proteasome-dependent degradation and ubiquitination of YAP, thus inhibiting HSC activation. Additionally, we showed that PPZ destabilized YAP by disrupting the interaction between a deubiquitinating enzyme OTUB2 and YAP, and subsequently blocked the progression of hepatic fibrosis.


Asunto(s)
Conductos Biliares/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Pantoprazol/uso terapéutico , Proteolisis/efectos de los fármacos , Proteínas Señalizadoras YAP/agonistas , Animales , Conductos Biliares/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Células Estrelladas Hepáticas/metabolismo , Humanos , Ligadura , Cirrosis Hepática/metabolismo , Masculino , Pantoprazol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Inhibidores de la Bomba de Protones/uso terapéutico , Ratas , Ratas Sprague-Dawley , Proteínas Señalizadoras YAP/metabolismo
15.
Talanta ; 217: 121070, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32498852

RESUMEN

C-reactive protein (CRP) level in blood is associated with the risk of developing cardiovascular events in higher-risk populations. We present a sandwich ELISA-like assay for the determination of CRP in blood by citicoline-bovine serum albumin (citicoline-BSA) conjugate and aptamer-functionalized gold nanoparticles (aptamer-AuNPs) nanozyme. The CRP in the blood sample was selectively adsorbed to the ELISA plate coated by citicoline-BSA, and then incubated with added aptamer-AuNPs. AuNPs exhibited peroxidase activity and oxidized 3,3'5,5'-tetramethylbenzidine from colorless to blue, achieving the measurement at 652 nm. The amplified signal increased linearly in a wide range from 0.1 to 200 ng mL-1 and with a detection limit of 8 pg mL-1. Finally, the method was further tested using rat blood from an isoproterenol-induced myocardial infarction experimental model to confirm its applicability. The developed method could directly determine CRP in blood sample after dilution with high accuracy and sensitivity. This method has many advantages, such as easiness to prepare materials, good stability between batches, high specificity, low detection limit, low-cost, easiness to operate with simple instruments, the most remarkable of which is its excellent lot-to-lot stability over the classical ELISA.


Asunto(s)
Aptámeros de Nucleótidos/química , Proteína C-Reactiva/análisis , Citidina Difosfato Colina/química , Ensayo de Inmunoadsorción Enzimática , Nanopartículas del Metal/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Oro/química , Masculino , Ratas , Ratas Sprague-Dawley
16.
Polymers (Basel) ; 12(3)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155928

RESUMEN

Polypropylene (PP) fibers are employed commonly as the raw material of technical textiles (nonwovens), and the research focuses on fine-denier fibers and their functionalities. In this work, antibacterial PP masterbatches with different dosage (1-5 wt.%) of nano-ZnO particles as the antibacterial agent were prepared via a twin-screw extruder. The as-prepared PP masterbatches were electrospun on a home-made electrospinning device to afford ultra-fine PP fibers. The morphologies of as-spun ultrathin PP fibers with 16 µm of average diameter were observed by SEM. The structure and element distribution were characterized by means of energy-dispersive spectroscopy (EDS) and Fourier-transfer infrared spectroscopy (FTIR), respectively. There was some zinc obviously distributed on the surface when a dosage of ZnO more than 1 wt.% was used, which contributed to the antibacterial activity. The crystallinity of PP fibers was not affected strongly by the dosage of ZnO based on the differential scanning calorimetry (DSC) heating curves, while thermal decomposition improved with the increase in ZnO content, and the mechanical strength decreased predictably with the increase in inorganic ZnO content.

17.
Acta Pharmacol Sin ; 41(5): 661-669, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31932644

RESUMEN

Chronic tissue injury with fibrosis results in the disruption of tissue architecture, organ dysfunction, and eventual organ failure. Therefore, the development of effective antifibrotic drugs is urgently required. IMB-S7 is novel biphenyl compound derived from bifendate (biphenyldicarboxylate) that is used for the treatment of chronic hepatitis in China. In the current study we investigated the potential of IMB-S7 as an antihepatic fibrosis agent. In bile duct ligation (BDL) rat model, oral administration of IMB-S7 (400 mg· kg-1· d-1, for 14 days) significantly ameliorated BDL-induced liver necrosis, bile duct proliferation, and collagen accumulation. We then showed that IMB-S7 treatment markedly suppressed the TGF-ß/Smad pathway in human hepatic stellate cell line LX2 and mouse primary HSCs, as well as in liver samples of BDL rats, thus inhibiting the transcription of most fibrogenesis-associated genes, including TGF-ß1, COL1A1, and ACTA2. Furthermore, IMB-S7 treatment significantly suppressed the expression of integrin αv at the mRNA and protein levels in TGF-ß-treated LX2 cells and liver samples of BDL rats. Using integrin αv overexpression and silencing, we demonstrated that integrin αv activity correlated positively with the activation of TGF-ß/Smad pathway. Based on dual luciferase assay and DNA affinity precipitation assay, we revealed that IMB-S7 inactivated integrin αv through competitively inhibiting the binding of Sp1, a transcription factor, to the integrin αv (ITGAV) promoter (-173/-163 bp). These results suggest that IMB-S7 inhibits HSCs activation and liver fibrosis through Sp1-integrin αv signaling, and IMB-S7 may be a promising candidate to combat hepatic fibrosis in the future.


Asunto(s)
Compuestos de Bifenilo/farmacología , Integrina alfaV/genética , Cirrosis Hepática/tratamiento farmacológico , Factor de Transcripción Sp1/antagonistas & inhibidores , Animales , Conductos Biliares/cirugía , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Integrina alfaV/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/cirugía , Estructura Molecular , Ratas , Factor de Transcripción Sp1/metabolismo , Relación Estructura-Actividad
18.
J Drug Target ; 28(1): 23-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31094236

RESUMEN

Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.


Asunto(s)
Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Fosforilación/fisiología , Transducción de Señal , Relación Estructura-Actividad
19.
Br J Pharmacol ; 177(2): 372-387, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621893

RESUMEN

BACKGROUND AND PURPOSE: This study investigates the antifibrotic activities and potential mechanisms of costunolide (COS), a natural sesquiterpene compound. EXPERIMENTAL APPROACH: Rats subjected to bile duct ligation and mice challenged with CCl4 were used to study the antifibrotic effects of COS in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as an in vitro liver fibrosis models. The expression of fibrogenic genes and signaling proteins in the neurogenic locus notch homologue protein 3 (Notch3)-hairy/enhancer of split-1 (HES1) pathway was examined using western blot and/or real-time PCR. Notch3 degradation was analysed using immunofluorescence and coimmunoprecipitation. KEY RESULTS: In animals, COS administration attenuated hepatic histopathological injury and collagen accumulation and reduced the expression of fibrogenic genes. COS time- and dose-dependently suppressed the levels of fibrotic markers in LX-2 cells and mouse pHSCs. Mechanistic studies showed COS destabilized Notch3 and subsequently inhibited the Notch3-HES1 pathway, thus inhibiting HSC activation. Furthermore, COS blocked the WW domain-containing protein 2 (WWP2)/protein phosphatase 1G (PPM1G) interaction and enhanced the effect of WWP2 on Notch3 degradation. CONCLUSIONS AND IMPLICATIONS: COS exerted potent antifibrotic effects in vitro and in vivo by disrupting the WWP2/PPM1G complex, promoting Notch3 degradation and inhibiting the Notch3/HES1 pathway. This indicates that COS may be a potential therapeutic candidate for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática Experimental/prevención & control , Hígado/efectos de los fármacos , Receptor Notch3/metabolismo , Sesquiterpenos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Tetracloruro de Carbono , Línea Celular , Conducto Colédoco/cirugía , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligadura , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/etiología , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Ratones Endogámicos BALB C , Proteolisis , Ratas Sprague-Dawley , Receptor Notch3/genética , Transducción de Señal , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Biomed Pharmacother ; 120: 109478, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31568987

RESUMEN

Resistance to chemotherapeutic agents is a major cause of treatment failure in patients with oral cancer. Proton pump inhibitors (PPIs), essentially H+-K+-ATPase inhibitors which are currently used in the treatment of acid related diseases, have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to investigate whether pantoprazole (PPZ, one of PPIs) could increase the sensitivity of chemoresistant oral epidermoid carcinoma cells (KB/V) to vincristine (VCR) and elucidate the underlying action mechanism. Results showed that combination treatment of PPZ and VCR synergistically inhibited the proliferation of KB/V cells in vitro and in vivo. Furthermore, administration of PPZ and VCR not only induce apoptosis and G2/M phase arrest in KB/V cells but also suppress the migration and invasion of KB/V cells. The mechanism underlying synergistic anti-tumor effect of PPZ and VCR was related to the inhibition of the function and expression of P-glycoprotein (P-gp) and the down-regulation of EGFR/MAPK and PI3K/Akt/mTOR signaling pathways in KB/V cells. Additionally, we observed that PPZ treatment induced an increase in lysosomal pH and inhibited the activity of lysosomal enzyme acid phosphatase in KB/V cells, which could functionally reduce the sequestration of VCR in lysosomes and sensitized KB/V cells to VCR. In conclusion, our study demonstrated that PPZ could be included in new combined therapy of human oral cancer (especially on VCR-resistant therapy) together with VCR.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Pantoprazol/farmacología , Vincristina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Células KB , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Boca/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...