Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3330, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286618

RESUMEN

The phenomenon that critical supercurrents along opposite directions become unequal is called the supercurrent diode effect (SDE). It has been observed in various systems and can often be understood by combining spin-orbit coupling and Zeeman field, which break the spatial-inversion and time-reversal symmetries, respectively. Here, we theoretically investigate another mechanism of breaking these symmetries and predict the existence of the SDE in chiral nanotubes without spin-orbit coupling. The symmetries are broken by the chiral structure and a magnetic flux through the tube. With a generalized Ginzburg-Landau theory, we obtain the main features of the SDE in its dependence on system parameters. We further show that the same Ginzburg-Landau free energy leads to another important manifestation of the nonreciprocity in superconducting systems, i.e., the nonreciprocal paraconductivity (NPC) slightly above the transition temperature. Our study suggests a new class of realistic platforms to investigate nonreciprocal properties of superconducting materials. It also provides a theoretical link between the SDE and the NPC, which were often studied separately.

2.
Phys Rev Lett ; 127(19): 196801, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797150

RESUMEN

For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetal, i.e., a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.

3.
Phys Rev Lett ; 126(23): 237002, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34170187

RESUMEN

Majorana fermions exist on the boundaries of two-dimensional topological superconductors (TSCs) as charge-neutral quasiparticles. The neutrality makes the detection of such states challenging from both experimental and theoretical points of view. Current methods largely rely on transport measurements in which Majorana fermions manifest themselves by inducing electron-pair tunneling at the lead-contacting point. Here we show that chiral Majorana fermions in TSCs generate enhanced local optical response. The features of local optical conductivity distinguish them not only from trivial superconductors or insulators but also from normal fermion edge states such as those in quantum Hall systems. Our results provide a new applicable method to detect dispersive Majorana fermions and may lead to a novel direction of this research field.

4.
Nat Commun ; 12(1): 3676, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135329

RESUMEN

We present measurements of the magnetic torque, specific heat and thermal expansion of the bulk transition metal dichalcogenide (TMD) superconductor NbS2 in high magnetic fields, with its layer structure aligned strictly parallel to the field using a piezo rotary positioner. The upper critical field of superconducting TMDs in the 2D form is known to be dramatically enhanced by a special form of Ising spin orbit coupling. This Ising superconductivity is very robust to the Pauli paramagnetic effect and can therefore exist beyond the Pauli limit for superconductivity. We find that superconductivity beyond the Pauli limit still exists in bulk single crystals of NbS2 for a precisely parallel field alignment. However, the comparison of our upper critical field transition line with numerical simulations rather points to the development of a Fulde-Ferrell-Larkin-Ovchinnikov state above the Pauli limit as a cause. This is also consistent with the observation of a magnetic field driven phase transition in the thermodynamic quantities within the superconducting state near the Pauli limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...