Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Chemosphere ; 359: 142308, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734246

RESUMEN

Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.

2.
Diabetes Res Clin Pract ; 212: 111681, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677367

RESUMEN

AIM: To evaluate the relationship of 25-hydroxyvitamin D (25(OH)D), lipoprotein-associated phospholipase A2 (Lp-PLA2), and coronary artery disease (CAD) in type 2 diabetes mellitus (T2DM) patients with no history or symptoms of cardiovascular disease. METHODS: The study identified 66 pairs of T2DM patients with and without CAD using propensity score matching. All subjects performed coronary computed tomography angiography (CCTA). Data on 25(OH)D, Lp-PLA2, and metabolic indexes were collected and analyzed. RESULTS: Compared to the patients without CAD, the patients with CAD had lower 25(OH)D levels and the rate of vitamin D sufficiency, but higher Lp-PLA2 levels. Meanwhile, subjects in the vitamin D sufficiency group had a lower prevalence of CAD and Lp-PLA2 levels. Furthermore, 25(OH)D was inversely correlated with Lp-PLA2, Gensini score, Leiden score, segment involvement score, and segment stenosis score (P < 0.05). After adjusting for age, gender, blood lipids and blood pressure, 25(OH)D was associated with a decreased risk of CAD (aOR 0.933, 95 %CI 0.887-0.983, P = 0.009), while Lp-PLA2 was associated with an increased risk of CAD (aOR 1.014, 95 %CI 1.005-1.022, P = 0.002). CONCLUSIONS: Decreased 25(OH)D and increased Lp-PLA2 could identify patients with a high risk of CAD and are associated with the severity of coronary artery stenosis in T2DM.

3.
J Control Release ; 368: 318-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428530

RESUMEN

Dry eye disease (DED) is a common and frequent ocular surface disease worldwide, which can cause severe ocular surface discomfort and blurred vision. Inflammation and reactive oxygen species (ROS) play decisive roles in the development of DED. However, existing treatments usually focus on anti-inflammation while ignore the role of ROS in DED. Ever worse, the clinical preparations are easily cleared by nasolacrimal ducts, resulting in poor therapeutic effect. To circumvent these obstacles, here we designed a phenylboronic acid (PBA) modified liposome co-loading immunosuppressant cyclosporin A (CsA) and antioxidant crocin (Cro). The CsA/Cro PBA Lip achieved mucoadhesion through the formation of covalent bonds between PBA and the sialic acid residues on mucin, and consequently improved the retention of drugs on the ocular surface. By inhibiting ROS production and blocking NF-κB inflammatory pathway, CsA/Cro PBA Lip successfully promoted the healing of damaged corneal epithelium, eventually achieving the goal of relieving DED. CsA/Cro PBA Lip is proven a simple yet effective dual-drug delivery system, exhibiting superior antioxidant and anti-inflammatory effects both in vitro and in vivo. This approach holds great potential in the clinical treatment of DED and other related mucosal inflammations.


Asunto(s)
Síndromes de Ojo Seco , Liposomas , Humanos , Liposomas/uso terapéutico , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno , Soluciones Oftálmicas , Síndromes de Ojo Seco/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ciclosporina
4.
J Colloid Interface Sci ; 664: 980-991, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508033

RESUMEN

To reduce the preparation cost of high-purity hydrogen, it is necessary to search suitable non-precious metal catalysts with high activity and robust stability. Herein, two means (heteroatom-doping and the heterostructure construction) were adopted together to improve the dual-function activity of NiFe LDH which was widely used in water electrolysis. Mo doped NiFe LDH nanoflowers were firstly generated by hydrothermal reaction, and then NiSx was modified on the petals via electrodeposition. Finally, the obtained NF/Mo-NiFe LDH/NiSx with large electrochemical active area exhibits the expected electrochemical performance with the overpotential at 100 mA cm-2 of 169 and 249 mV for hydrogen evolution (HER) and oxygen evolution reaction (OER) respectively. Assembling NF/Mo-NiFe LDH/NiSx into a two-electrode device for the integral water electrolysis, it just requires a cell voltage of 1.69 V to drive a current density of 100 mA cm-2, and keeps stable after 50-hour continuous operation in 1.0 M KOH. Mo-doping not only regulates the electronic structure of the transition metals and reduces the energy barrier of HER intermediates, but also facilitates the generation of reactive sites for OER. Meanwhile, the construction of heterointerface ensures the synergism between NiSx and Mo-NiFe LDH and accelerates the electron transfer across interfaces, thus enhancing the bifunctional performance.

5.
ACS Appl Mater Interfaces ; 16(6): 6879-6893, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38300288

RESUMEN

Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.


Asunto(s)
Dinoprostona , Melanoma , Ratones , Humanos , Animales , Dinoprostona/metabolismo , Melanoma/patología , Linfocitos T CD8-positivos , Ciclooxigenasa 2/metabolismo , Terapia de Inmunosupresión , Inmunoterapia , Inmunosupresores , Inflamación/tratamiento farmacológico , Microambiente Tumoral
6.
MycoKeys ; 101: 1-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38222042

RESUMEN

Chinese fir (Cunninghamialanceolata) is a special fast-growing commercial tree species in China and has significant ecological and economic value. However, it experienced damage from leaf blight caused by pathogenic fungi of the genus Alternaria. To determine the diversity of Alternaria species associated with leaf blight of Chinese fir in China, infected leaves were collected from five major cultivation provinces (Fujian, Henan, Hunan, Jiangsu and Shandong provinces). A total of 48 fungal strains of Alternaria were obtained. Comparison of morphology and phylogenetic analyses, based on nine loci (ITS, SSU, LSU, GAPDH, RPB2, TEF1, Alt a1, endoPG and OPA10-2) of the representative isolates as well as the pairwise homoplasy index tests, revealed that the fungal strains belonged to seven undescribed taxa of Alternaria, which are described here and named as Alternariacunninghamiicolasp. nov., A.dongshanqiaoensissp. nov., A.hunanensissp. nov., A.kunyuensissp. nov., А. longqiaoensissp. nov., A.shandongensissp. nov. and A.xinyangensissp. nov. In order to prove Koch's postulates, pathogenicity tests on detached Chinese fir leaves revealed significant pathogenicity amongst these species, of which A.hunanensis is the most pathogenic to Chinese fir. This study represents the first report of A.cunninghamiicola, A.dongshanqiaoensis, A.hunanensis, A.kunyuensis, A.longqiaoensis, A.shandongensis and A.xinyangensis causing leaf blight on Chinese fir. Knowledge obtained in this study enhanced our understanding of Alternaria species causing leaf blight on Chinese fir and was crucial for the disease management and the further studies in the future.

7.
Diagn Pathol ; 19(1): 15, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243319

RESUMEN

Mammary mucoepidermoid carcinoma (MEC) is a rare entity. The molecular characteristics of breast MEC have not been fully investigated due to its rarity. We performed a retrospective study among 1000 patients with breast carcinomas and identified four cases of breast MEC. Clinical and demographic data were collected. Immunohistochemistry panels which were used to diagnose salivary gland MEC and breast carcinomas were also performed. MAML2 rearrangements were detected by FISH and fusion partners were identified by RNA sequencing. Whole-exome sequencing (WES) was used to reveal the genomes of these four breast MEC. Then, the biological functions and features of breast MEC were further compared with those of invasive breast carcinomas and salivary gland MEC.According to Ellis and Auclair's methods, these four breast MEC could be classified as low-grade breast MEC. All the patients were alive, and disease-free survival (PFS) ranged from 20 months to 67 months. Among these four breast MEC, two cases were triple-negative, and the other two cases were found to be ER positive, with one also showing HER2 equivocal by immunohistochemical staining, but no amplification in FISH. FISH analysis confirmed the presence of the MAML2 translocation in three of four tumors, and CRTC1-MAML2 fusion was confirmed in two of them by RNA-sequencing. The average coverage size of WES for the tumor mutation burden estimation was 32 Mb. MUC4, RP1L1 and QRICH2 mutations were identified in at least three tumors, and these mutation also existed in breast invasive carcinoma databases (TCGA, Cell 2015; TCGA, Nature 2012). The results showed that there were many genes in breast MEC overlapping with the breast invasive carcinoma databases mentioned above, range from 5 to 63 genes (median:21 genes). Next, we assessed immune cell infiltration levels in these tumors. In all these tumors, M2 macrophages and plasma cell were in the high infiltration group. Our breast MEC showed different results from the salivary gland MEC, whose plasma cells were in the low infiltration group. Overall, we first analyzed the genomics and tumor microenvironment of breast mucoepidermoid carcinoma and proposed our hypothesis that although MECs arising in the breast resemble their salivary gland counterparts phenotypically, our findings indicate that breast MECs probably resemble invasive breast carcinomas at the genetic level and immune cell infiltration levels. More cases and in deep research need to be done to further understand this rare carcinoma.


Asunto(s)
Neoplasias de la Mama , Carcinoma Mucoepidermoide , Neoplasias de las Glándulas Salivales , Humanos , Femenino , Proteínas de Unión al ADN/genética , Transactivadores/genética , Estudios Retrospectivos , Carcinoma Mucoepidermoide/genética , Carcinoma Mucoepidermoide/patología , Exoma , Secuenciación del Exoma , Microambiente Tumoral , Factores de Transcripción/genética , Neoplasias de la Mama/genética , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Genómica , Análisis de Secuencia de ARN , Proteínas del Ojo/genética
8.
Int J Biol Macromol ; 254(Pt 1): 127727, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287586

RESUMEN

Modifying cellulose to obtain materials with favorable processing properties and functions is highly significant, especially, for the detection and removal of heavy metal ions. In this study, fluorescent cellulose-based polyurethane (PU) films containing naphthalimide fluorophore were synthesized and could use for the convenient detection and removal of Hg+ ions. Firstly, the microcrystalline cellulose was treated with SOCl2 to convert some -OH groups into -Cl. Simultaneously, a naphthalimide derivative (NAN) with -NH- groups was synthesized. Subsequently, a fluorescent cellulose-based probe (Cel-NAN) was prepared by utilizing the substitution reaction between -Cl on cellulose and -NH- on NAN. Finally, two cellulose-based fluorescent PU films (Cel-NAN-PU1 and Cel-NAN-PU2) were successfully synthesized by reacting the unreacted -OH groups on Cel-NAN with PEG-1000 and HDI/IPDI. These as-prepared PU films could serve as portable fluorescence test papers to Hg+ ions in aqueous solutions. Upon contact with Hg+ ions, the fluorescence was quenched, acting as a "turn-off" probe. Simultaneously, these films could serve as adsorbents for the removal of Hg+ ions from aqueous systems. Cel-NAN-PU1 film exhibited a removal efficiency over 80 % and an adsorption capacity of 8.4 mg·cm-2 for Hg+. These cellulose-based fluorescent PU films possess promising potential in the field of mercury pollution control.


Asunto(s)
Mercurio , Poliuretanos , Naftalimidas , Soluciones , Mercurio/química , Iones , Agua/química , Celulosa/química , Solventes , Colorantes Fluorescentes
9.
Environ Sci Pollut Res Int ; 31(5): 7543-7555, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38165545

RESUMEN

The elimination of antimony pollution has attracted increasing concerns because of its high toxicity to human health and the natural environment. In this work, biomimetic δ-MnO2 was synthesized by using waste tobacco stem-silks as biotemplate (Bio-δ-MnO2) and used in the capture of Sb(III)from aqueous solution. The tobacco stem-silks not only provided unique wrinkled morphologies but also contained carbon element self-doped into the resulting samples. The maximum Sb(III) adsorption capacity reached 763.4 mg∙g -1, which is 2.06 times higher than δ-MnO2 without template (370.0 mg∙g -1), 4.53 times than tobacco stem-silks carbon (168.5 mg∙g -1), and 10.39 times than commercial MnO2 (73.5 mg∙g -1), respectively. The isotherm and kinetic studies indicated that the adsorption behavior was consistent with the Langmuir isotherm model and the pseudo-second-order kinetic equation. As far as we are aware, the adsorption capacity of Bio-δ-MnO2 is much higher than that of most Sb(III) adsorbents. FT-IR, XPS, SEM, XRD, and Zeta potential analyses showed that the main mechanism for the adsorption of Sb(III) by Bio-δ-MnO2 includes electrostatic attraction, surface complexation, and redox. Overall, this study provides a new sustainable way to convert agricultural wastes to more valuable products such as biomimetic adsorbent for Sb(III) removal in addition to conventional activated carbon and biochar.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Humanos , Cinética , Compuestos de Manganeso , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Adsorción
10.
Epigenomics ; 16(1): 23-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38221899

RESUMEN

Aim: To investigate the relationship between potential abnormal epigenetic modification and immune cell infiltration in patients with cervical carcinoma. Materials & methods: RNA expression profiles from The Cancer Genome Atlas database were used to explore the relationship between key biomarkers and tumor-infiltrating immune cells and for clinical specimen validation. Results: Two nomogram models were developed, one with specific ceRNA and the other based on biological markers of related tumor-infiltrating immune cells. Moreover, a key biomarker (RIPOR2), which was significantly relevant to CD8 T cells. Conclusion: RIPOR2 and CD8 T cells play a crucial role in the development and progression of cervical carcinoma, suggesting their potential as markers for guiding future therapeutic strategies.


Asunto(s)
Carcinoma , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Pronóstico , ARN Endógeno Competitivo , Nomogramas
11.
MycoKeys ; 101: 45-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229910

RESUMEN

Chinese fir (Cunninghamialanceolata) is a special fast-growing commercial tree species in China with high economic value. In recent years, leaf blight disease on C.lanceolata has been observed frequently. The diversity of Fusarium species associated with leaf blight on C.lanceolata in China (Fujian, Guangxi, Guizhou, and Hunan provinces) was evaluated using morphological study and molecular multi-locus analyses based on RNA polymerase second largest subunit (RPB2), translation elongation factor 1-alpha (TEF-1α), and RNA polymerase largest subunit (RPB1) genes/region as well as the pairwise homoplasy index tests. A total of five Fusarium species belonging to four Fusarium species complexes were recognized in this study. Two known species including Fusariumconcentricum and F.fujikuroi belonged to the F.fujikuroi species complex, and three new Fusarium species were described, i.e., F.fujianense belonged to the F.lateritium species complex, F.guizhouense belonged to the F.sambucinum species complex, and F.hunanense belonged to the F.solani species complex. To prove Koch's postulates, pathogenicity tests on C.lanceolata revealed a wide variation in pathogenicity and aggressiveness among the species, of which F.hunanense HN33-8-2 caused the most severe symptoms and F.fujianense LC14 led to the least severe symptoms. To our knowledge, this study also represented the first report of F.concentricum, F.fujianense, F.fujikuroi, F.guizhouense, and F.hunanense causing leaf blight on C.lanceolata in China.

12.
Neurochem Res ; 49(2): 388-401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847329

RESUMEN

Endoplasmic reticulum (ER) dysfunction caused by excessive ER stress is a crucial mechanism underlying seizures-induced neuronal injury. Studies have shown that mitochondrial reactive oxygen species (ROS) are closely related to ER stress, and our previous study showed that activating transcription factor 5 (ATF5)-regulated mitochondrial unfolded protein response (mtUPR) modulated mitochondrial ROS generation in a hippocampal neuronal culture model of seizures. However, the effects of ATF5-regulated mtUPR on ER stress and the underlying mechanisms remain uncertain in epilepsy. In this study, ATF5 upregulation by lentivirus infection attenuated seizures-induced neuronal damage and apoptosis in a rat model of pilocarpine-induced epilepsy, whereas ATF5 downregulation by lentivirus infection had the opposite effects. ATF5 upregulation potentiated mtUPR by increasing the expression of mitochondrial chaperone heat shock protein 60 (HSP60) and caseinolytic protease proteolytic subunit (ClpP) and reducing mitochondrial ROS generation in pilocarpine-induced seizures in rats. Additionally, upregulation of ATF5 reduced the expression of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), suggesting suppression of ER stress; Moreover, ATF5 upregulation attenuated apoptosis-related proteins such as B-cell lymphoma-2 (BCL2) downregulation, BCL2-associated X (BAX) and cleaved-caspase-3 upregulation. However, ATF5 downregulation exerted the opposite effects. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO attenuated the harmful effects of ATF5 downregulation on ER stress and neuronal apoptosis by reducing mitochondrial ROS generation. Overall, our study suggested that ATF5-regulated mtUPR exerted neuroprotective effects against pilocarpine-induced seizures in rats and the underlying mechanisms might involve mitochondrial ROS-mediated ER stress.


Asunto(s)
Epilepsia , Infecciones por Lentivirus , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Pilocarpina/toxicidad , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Apoptosis , Mitocondrias/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Neuronas/metabolismo , Infecciones por Lentivirus/metabolismo
13.
Immunobiology ; 228(5): 152711, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543010

RESUMEN

BACKGROUND: Autoimmune encephalitis (AE) is a collective name, covering an emerging spectrum of autoimmune-mediated neurological diseases related to antibodies and synaptic or intracellular proteins. Anti-NMDAR, anti-LGI1, and anti-GABABR are three types of neuronal cell surface antibodies. Autonomic dysfunction represents a frequently occurring clinical manifestation. This observational study purposes to investigate comparisons between two groups with or without autonomic dysfunction and detect the autonomic dysfunction and other indexes in anti-NMDAR, anti-LGI1, and anti-GABABR cohorts. METHODS: Patients with anti-NMDAR, anti-LGI1 and anti-GABABR encephalitis were recruited from the May 2017 to the April 2022. The following information was recorded: age, age at onset, tumor presence, gender, prodromal symptoms, clinical manifestations, cranial magnetic resonance imaging, cerebrospinal fluid and blood examinations, and immunotherapy. RESULTS: There were totally 161 patients enrolled in this study. Among these participants, 104 individuals (64.6%) presented autonomic dysfunction and the remaining 57 (35.4%) were free of autonomic dysfunction. Sinus tachycardia was the most common autonomic dysfunction, followed by pollakiuria/uroclepsia, feverscence, central hypoventilation, sinus bradycardia, constipation, uroschesis, hyperhidrosis, hypersalivation, hypotension, and early satiety/emesis. Compared to patients without autonomic dysfunction, those with autonomic dysfunction had a higher incidence of central hypoventilation and ICU admissions. Meanwhile, in both groups with or without autonomic dysfunction, meatal behavior disorder, cognitive impairment, and epileptic seizure were three most common clinical manifestations. There were no significant differences in cranial magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) examination, antibody titers and number of immunotherapy types. Further analysis of AE mediated by distinct neuronal surface antibodies demonstrated that there were 85 anti-NMDAR, 56 anti-LGI1, and 20 anti-GABABR encephalitis patients. The significant differences between these three cohorts appeared in age, tumor presence, fervescence presence and antibody titers. CONCLUSION: This study demonstrated the comparisons between autonomic dysfunction group and autonomic dysfunction-free group and provided insights into better diagnosis and treatment.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Neoplasias , Humanos , Hipoventilación , Encefalitis/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Autoanticuerpos
14.
Artículo en Chino | MEDLINE | ID: mdl-37549949

RESUMEN

Objective:To investigate the distribution of allergens in patients with allergic rhinitis (AR) in Ningxia, and provide theoretical data for the prevention and treatment of AR in this region. Methods:A total of 1664 patients diagnosed with AR in the Otorhinolaryngology Head and Neck Surgery Department of Yinchuan First People's Hospital Outpatient Clinic from January 2018 to December 2021 were retrospectively collected. Use the allergen sIgE antibody detection kit (immunoblotting method) to detect inhalation and ingestion allergens in patients.Results: ①Among all AR patients, 1 158 cases were detected positive, resulting in the detection rate was 69.59%; ②The detection rate of inhalation allergen was 65.87%, and the detection rate of ingestion allergen was 19.83%; ③Mugwort was the most sensitive allergen, and 76.32% of the patients having a positive grade ≥3; ④Out of the patients, 294 cases (25.39%) were allergic to only one allergen, 244 cases (21.07%) were allergic to two allergens, and 620 cases (53.54%) were allergic to three or more allergens; ⑤During different seasons, the highest number of positive allergens detected was in the summer, with 968 cases (83.59%). Mugwort was the main allergen during this season (69.01%). After the COVID-19 epidemic, the total positive rate of sIgE tests in AR patients decreased compared to before, and the difference was statistically significant (P<0.001); ⑥Mugwort, dog epithelium, mold combination, egg, peanut, soybean, Marine fish combination and fruit combination all showed statistically significant differences between different gender groups (P<0.05); ⑦Common ragweed, mugwort, dust mite combination, cockroach, egg, milk, Marine fish combination, shrimp, fruit combination and nut combination all showed statistically significant differences among different age groups (P<0.05); ⑧There were statistically significant differences in hay dust among different ethnic groups (P<0.05). Conclusion:Artemisia argyi is the main allergen in Ningxia, and the distribution characteristics of different allergens are influenced by treatment season, the COVID-19 epidemic, gender, age, ethnicity, and other factors, showing certain distribution patterns and rules.


Asunto(s)
Artemisia , COVID-19 , Rinitis Alérgica , Alérgenos , Estudios Retrospectivos , Pruebas Cutáneas , Humanos , Masculino , Femenino
15.
Nanomaterials (Basel) ; 13(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570577

RESUMEN

Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.

16.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511143

RESUMEN

The design and synthesis of efficient photocatalysts that promote the degradation of organic pollutants in water have attracted extensive attention in recent years. In this work, CdS nanoparticles are grown in situ on Co@C derived from metal-organic frameworks. The resulting hierarchical CdS/Co@C nanostructures are evaluated in terms of their adsorption and photocatalytic ciprofloxacin degradation efficiency under visible-light irradiation. The results show that, apart from offering a large surface area (55.69 m2·g-1), the prepared material can effectively suppress the self-agglomeration of CdS and enhance the absorption of visible light. The CdS/Co@C-7 composite containing 7% wt Co@C has the highest photodegradation rate, and its activity is approximately 4.4 times greater than that of CdS alone. Moreover, this composite exhibits remarkable stability after three successive cycles of photocatalysis. The enhanced photocatalytic performance is largely ascribed to the rapid separation of electron-hole pairs and the effective electron transfer between CdS and Co@C, which is confirmed via electrochemical experiments and photoluminescence spectra. The active substance capture experiment and the electron spin resonance technique show that h+ is the main active entity implicated in the degradation of CIP, and accordingly, a possible mechanism of CIP photocatalytic degradation over CdS/Co@C is proposed. In general, this work presents a new perspective on designing novel photocatalysts that promote the degradation of organic pollutants in water.


Asunto(s)
Ciprofloxacina , Nanopartículas , Ciprofloxacina/química , Fotólisis , Carbono , Adsorción , Cobalto , Catálisis , Nanopartículas/química , Agua
17.
Adv Mater ; 35(39): e2303736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37488693

RESUMEN

Tumor-derived exosomes (TDEs) carry various biomolecular cargos and play crucial roles in metastasis. TDEs migrate to distal organs for intercellular communication and induce the formation of pre-metastatic niches (PMNs) to support tumor implantation and proliferation. Precise interference in the bioprocess of TDEs is expected to be efficacious for suppressing tumor metastasis. However, targeting both TDEs and the primary tumor is challenging. Here, based on metabolic glycoengineering and bio-orthogonal click chemistry, a two-step delivery strategy is designed to overcome this. During the first step, the tetraacetylated N-azidoacetyl-d-mannosamine-loaded nanoparticle responds to the metabolic activity of tumor cells in the primary tumor, tagging both tumor cells and TDEs with azide groups; dibenzyl-cyclootyne-modified nanoparticles then can, as the second step, specifically react with tumor cells and TDEs through a bio-orthogonal click reaction. This strategy not only inhibits tumor growth in pancreatic cancer models but also curbs the communicative role of TDEs in inducing liver PMNs and metastasis by tracking and downregulating the exosomal macrophage migration inhibitory factor.


Asunto(s)
Exosomas , Nanopartículas , Neoplasias Pancreáticas , Humanos , Membranas Artificiales , Exosomas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Nanopartículas/química
18.
Int J Biol Macromol ; 247: 125764, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37433421

RESUMEN

Improving the water solubility of natural product cellulose and using it to treat heavy metal ions is very important. In this work, cellulose-based fluorescent probes containing BODIPY fluorophore were synthesized by simple chemical method, which realized the selective recognition and removal of Hg2+/Hg22+ ions in an aqueous system. Firstly, fluorescent small molecule (BOK-NH2) bearing -NH2 group was synthesized through Knoevenagel condensation reaction between BO-NH2 and cinnamaldehyde. Secondly, via the etherification of -OH on the cellulose, substituents bearing -C ≡ CH groups with different lengths at the end are grafted on the cellulose. Finally, cellulose-based probes (P1, P2, and P3) were prepared by amino-yne click reaction. The solubility of cellulose is improved greatly, especially the cellulose derivative with branched long chains has excellent solubility in water (P3). Benefiting from the improved solubility, P3 could be processed into solutions, films, hydrogels, and powders. Upon the addition of Hg2+/Hg22+ ions, the fluorescence intensity enhanced, which are "turn-on" probes. At the same time, the probes could be utilized as efficient adsorbents for Hg2+/Hg22+ ions. The removal efficiency of P3 for Hg2+/Hg22+ is 79.7 %/82.1 %, and the adsorption capacity is 159.4 mg·g-1/164.2 mg·g-1. These cellulose-based probes are expected to be employed in the treatment of polluted environments.


Asunto(s)
Celulosa , Mercurio , Celulosa/química , Colorantes Fluorescentes/química , Mercurio/química , Iones , Agua/química
19.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446901

RESUMEN

Nonconventional luminescent materials (NLMs) which do not contain traditional aromatic chromophores are of great interest due to their unique chemical structures, optical properties, and their potential applications in various areas, such as cellular imaging and chemical sensing. However, most reported NLMs show weak or no emission in dilute solutions, which severely limits their applications. In this work, dynamic hydrogen bonds were utilized to design NLMs with efficient emission in dilute solutions. To further validate the results, polymers P1 and P2 were successfully prepared and investigated. It was found that the luminescence quantum efficiency of P1 and P2 at a concentration of 0.1 mg/mL in water solution was 8.9 and 0.6%, respectively. The high efficiency can be attributed to the fact that polymer P1 has more intra- or intermolecular dynamic hydrogen bonds and other short interactions than P2 in dilute solutions, allowing P1 to achieve the through-space conjugation effect to increase the degree of system conjugation, restrict molecular motion, and decrease nonradiative transitions, which can effectively improve luminescence. In addition, polymer P2 exhibits the characteristics of clustering-triggered emission, excitation wavelength-dependent and concentration-dependent fluorescence properties, excellent photobleaching resistance, low cytotoxicity, and selective recognition of Fe3+. The present study investigates the manipulation of luminescence properties of NLMs in dilute solutions through the modulation of dynamic hydrogen bonds. This approach can serve as a semi-empirical technique for designing and building innovative NLMs in the times ahead.


Asunto(s)
Luminiscencia , Polímeros , Enlace de Hidrógeno , Polímeros/química , Fluorescencia
20.
Chemistry ; 29(56): e202301829, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452614

RESUMEN

The straightforward synthesis of several Fluorinated Polycyclic Aromatic Hydrocarbons by the efficient, transition-metal-free, arene fluorine nucleophilic substitution reaction is described, and the full investigation of their liquid crystalline and optical properties reported. The key precursors for this study, i. e. 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl derivatives, were obtained in two steps from the highly selective Scholl oxidative homo-coupling of 3,4-dialkoxy-1-bromobenzene, followed by quantitative double-lithiation. In situ room temperature nucleophilic annulation with either perfluorobenzene or perfluoronaphthalene leads to 1,2,3,4-tetrafluoro-6,7,10,11-tetraalkxoytriphenylenes and 9,10,11,12,13,14-hexafluoro-2,3,6,7-tetraalkoxybenzo[f]tetraphenes, respectively, in good yields. Exploiting the same strategy, subsequent double annulations resulted in the formation of 9,18-difluoro-2,3,6,7,11,12,15,16-octa(alkoxy)tribenzo[f,k,m]tetraphenes and 9,10,19,20-tetrafluoro-2,3,6,7,12,13,16,17-octakis(hexyloxy)tetrabenzo[a,c,j,l]tetracenes, respectively. Despite the presence of only four alkoxy chains, the polar "Janus" mesogens display a columnar hexagonal mesophase over broad temperature ranges, with higher mesophase stability than the archetypical 2,3,6,7,10,11-hexa(alkoxy)triphenylenes and their hydrogenated counterparts. The improvement or induction of mesomorphism is attributed to efficient antiparallel face-to-face π-stacking driven by the establishment of non-covalent perfluoroarene-arene intermolecular interactions. The larger lipophilic discotic π-extended compounds also exhibit columnar mesomorphism, over similar temperature ranges and stability than their hydrogenated homologs. Finally, these fluorinated molecules form stringy gels in various solvents, and show interesting solvatochromic emission properties in solution as well as strong emission in thin films and gels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA