Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 456: 140065, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38878541

RESUMEN

Selenoproteins found in selenium (Se)-enriched vegetables play a vital role in maintaining human health. In this study, four Se-containing broccoli proteins (Se-BP: albumin, globulin, prolamin, and glutelin) were continuous extracted by Osborne method. Three ultrafiltered fractions were subsequently obtained from the glutelin hydrolysate, composed of Se-contained broccoli peptides (Se-Bp) with different molecular weights (MW), namely, < 1 kDa, 1-3 kDa, and 3-10 kDa. Glutelin exhibited the highest protein yield (65.60 ± 1.07%), purity (78.39 ± 0.95%), nutritional value, organic Se content (88.05 ± 0.32% of total Se content), and Se speciation distribution (selenocystine, selenomethionine, methylselenocysteine, and selenoethionine). Additionally, the antioxidant activity of different MW of Se-Bp was assessed using electron spin resonance spectroscopy. The results revealed that antioxidant activity of the candidate peptide is dependent upon its Se content, amino acid composition, and MW, especially Se-Bp with MW of 1-3 kDa displayed the strongest free radical scavenging ability.

2.
Foods ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38540894

RESUMEN

Purple sweet potato (PSP) has abundant nutritional compounds, which are valuable constituents of the human diet, but its development and utilization are still in the primary processing phase. This study examined the differences in nutritional characteristics of 10 PSP varieties. A variety of nutritional components were evaluated and comprehensively compared using principal component analysis (PCA) and cluster analysis (CA). The PSP had 60.9-70.1% moisture. The dried PSP had abundant starch (43.9~67.2%) and dietary fiber (9.40~16.5%), moderate levels of protein (3.19~8.75%) and reducing sugar (1.44~4.01%), and low amounts of crude fat (0.51~1.01%). The anthocyanin profile varied significantly between the different varieties. A correlation analysis showed that a higher content of anthocyanins resulted in a darker color. The PCA and CA suggested that varieties XS, ZL, and JS18 are desirable for developing the diabetic patient's diet. JS1 had the highest anthocyanin, protein, and dietary fiber contents and the lowest starch, implying that it could be used as a source of natural colorants or functional foods. Varieties FX, GS, ES13, and EN are suitable for producing various starch-based food products, such as noodles, cookies, and pastries. This study provides a reference for the practical use and rational processing of PSP resources.

3.
Food Chem ; 439: 138109, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070236

RESUMEN

The application of rapeseed protein in human foods is limited by residual antinutritive components and poor sensory quality. The effects of five extraction protocols on rapeseed protein yield, sensory, functional and nutritional properties were systematically evaluated in this study. In particular, the potential of weakly acidic salt (pH 6.5, 150 mmol·L-1 MgCl2) extraction as a mild method for recovering edible rapeseed protein was investigated compared with conventional alkali extraction. All salt-extracted proteins showed above 40 % extraction yield and low antinutritional factor contents. They also had ideal amino acid patterns and better in vitro gastroduodenal digestibility than alkaline-extracted proteins. Additionally, the lighter color and odor, as well as better solubility, emulsion activity, foaming property, and water/oil holding capacity were found in weakly acidic salt extraction-ultrafiltered proteins. These findings suggest that weakly acidic salt extraction-ultrafiltration could be used for obtaining edible rapeseed protein, while extraction yield should be improved for scale application.


Asunto(s)
Brassica napus , Brassica rapa , Humanos , Proteínas de Plantas/química , Brassica rapa/química , Alimentos , Emulsiones
4.
Chem Biodivers ; 21(2): e202301428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116867

RESUMEN

Cardamine violifolia is a unique selenium hyperaccumulating vegetable in China, but its flowers are commonly wasted in large-scale cultivation. To better utilize this resource, this study explored the selenium content, chemical composition, and volatile organic compounds (VOCs) of hydro-distilling essential oil (EO) and hydrosol from C. violifolia flowers. ICP-MS results indicated that the EO and hydrosol contained selenium reaching 13.66±2.82 mg/kg and 0.0084±0.0013 mg/kg, respectively. GC-MS analysis revealed that organic acids, hydrocarbons, and amines were the main components of EO. Additionally, benzyl nitrile, benzaldehyde, benzyl isothiocyanate, benzyl alcohol, megastigmatrienone, and 2-methoxy-4-vinylphenol also existed in considerable amounts. The hydrosol extract had fewer components, mainly amines. HS-SPME-GC-MS corresponded to the composition analysis and aromatic compounds were the prevalent VOCs, while HS-GC-IMS primarily identified C2-C10 molecular alcohols, aldehydes, ethers, and sulfur-containing compounds. This study first described the chemical composition and VOC profiles of EO and hydrosol from selenium hyperaccumulating plant.


Asunto(s)
Cardamine , Aceites Volátiles , Selenio , Compuestos Orgánicos Volátiles , Selenio/análisis , Aceites Volátiles/química , Cardamine/química , Flores/química , Aminas/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Food Chem ; 427: 136710, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37406448

RESUMEN

Cardamine violifolia is a unique selenium (Se)-hyperaccumulating vegetable in China. The total Se content and Se speciation of three edible parts, including flowers, stems, and leaves were detected by HPLC-ICP-MS. Volatile organic compounds (VOCs) greatly impact food flavor. The VOCs of three samples were analyzed by E-nose, HS-GC-IMS, and HS-SPME-GC-MS. The results showed that the total Se content in flowers was significantly higher than that in leaves and was the lowest in stems. Organic Se accounts for more than 98% of the total Se content, primarily selenocystine, followed by methyl selenocysteine. A total of 102 VOCs were identified from C. violifolia, mainly esters, aldehydes, alcohols, and ketones. Flowers contained abundant VOCs, while stems and leaves contained fewer but similar profiles. Moreover, multivariate statistical analysis was applied to investigate the VOC variations and marker VOCs. This work can provide useful knowledge for understanding the Se characteristics and flavor of C. violifolia.


Asunto(s)
Cardamine , Selenio , Compuestos Orgánicos Volátiles , Verduras , Cromatografía de Gases y Espectrometría de Masas/métodos , Flores/química , Compuestos Orgánicos Volátiles/análisis
6.
Foods ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765975

RESUMEN

Monascus red pigments (MRPs), which are a kind of natural colorant produced by Monascus spp., are widely used in the food and health supplements industry but are not very stable during processing and storage. Thus, MRPs were embedded into liposome membranes using a thin-film ultrasonic method to improve stability in this study. Monascus red pigments liposomes (MRPL) exhibited spherical unilamellar vesicles (UV) with particle size, polydispersity indexes (PDI), and zeta potential of 20-200 nm, 0.362 ± 0.023, and -42.37 ± 0.21 mV, respectively. pH, thermal, light, metal ion, storage, and in vitro simulated gastrointestinal digestion stability revealed that, compared with free MRPs, liposomes embedding significantly enhanced the stability of MRPs when exposed to adverse environmental conditions. Furthermore, anticancer assay suggested that MRPL exhibited a stronger inhibitory effect on MKN-28 cells by damaging the integrity of cells, with the IC50 value at 0.57 mg/mL. Overall, MRPLs possess stronger stability in external environment and in vitro simulated digestion with greater anticancer activity, indicating that MRPLs have the potential for promising application in the functional foods and pharmaceutical industries.

7.
Food Chem ; 400: 134050, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36058042

RESUMEN

The protein-bound anthocyanin complexes are naturally existed in food systems by their spontaneous interaction. In this study, the interaction mechanism of homological proteins (p-PSP) and anthocyanins (FAC-PSP) was investigated to explore the binding characteristic of native protein-bound anthocyanins from purple sweet potato (p-BAC-PSP). The structural characterization, stability and anti-ultraviolet property of p-BAC-PSP were also evaluated. Results revealed that hydrophobic interaction is dominant binding force for forming p-BAC-PSP. The binding resulted in protein secondary structure changes with more ß-sheet and lower ß-turn, random coil structures. Fluorescence spectroscopy demonstrated that FAC-PSP quenched p-PSP fluorescence in a combination of static and dynamic mode (static dominant) with a binding constant of 105 L/mol reflecting strong affinity of FAC-PSP to p-PSP. Moreover, the complex form exhibited better protective effects on anthocyanins for pH, light, thermal stabilities and higher anti-ultraviolet activity. These findings further expanded the application of anthocyanins as stable, functional food and cosmetic ingredients.


Asunto(s)
Ipomoea batatas , Antocianinas/química , Ipomoea batatas/química , Extractos Vegetales/química
8.
Crit Rev Food Sci Nutr ; 63(31): 10678-10690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35648048

RESUMEN

Non-conventional seed oils are being considered novelty foods due to the unique properties of their chemical constituents. Numerous such seed oils serve as nutritional and functional supplements, making them a point of interest for scholars. Bitter gourd (Momordica charantia L.) seed oil (BGSO) has been widely used in folk medicine worldwide for the treatment of different pathologies, such as diabetes, cancer, and several inflammatory diseases. Therefore, its nutritional and medicinal value has been extensively studied. Considering the potential use of BGSO, it is imperative to have a comprehensive understanding of this product to develop and use its biologically active ingredients in innovative food and pharmaceutical products. An extensive understanding of BGSO would also help improve the economic feasibility of the bitter gourd seed processing industry and help prevent environmental pollution associated with the raw waste produced during the processing of bitter gourd seeds. This review addresses the potential uses of BGSO in terms of food and pharmaceuticals industry perspectives and comprehensively summarizes the oil extraction process, chemical composition, biological activity, and the application prospects of BGSO in clinical medicine.


Asunto(s)
Momordica charantia , Neoplasias , Humanos , Momordica charantia/química , Semillas , Suplementos Dietéticos , Aceites de Plantas
9.
Food Res Int ; 161: 111811, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192953

RESUMEN

Purple sweet potato (PSP) is an important economic crop in many countries, as a staple food and a source of bioactive compounds, which has attracted considerable attention. This review provides an up-to-date summary and discusses the available literature concerning PSP. Different issues, including its bioactive compounds, health effects and various efficient encapsulation strategies for PSP powders, extracts or individual substance are covered in detail, along with its utilization. In addition to the valuable nutritional composition, more than 135 bioactive compounds have been isolated and identified from these plants so far. Among the plenty of constituents, polysaccharides and flavonoids are the focus of attention and exhibit various biological activities.Additionally, protected-delivery systems are strongly proposed to shelter the bioactive compounds providing a better stability and improved pharmacological activities. Normally, PSP roots are the most attractive part to human because of their economic value. Even though PSP anthocyanins are the focus of researchers and industrial due to their attractive color and wide range of biological activities, PSP starch and protein also have wide applications in foods and nonfoods industries. However, the exploitation of PSP considering comprehensive utilization of various compounds, such as starch, non-starch polysaccharides, protein, and bioactive compounds should be considered.


Asunto(s)
Ipomoea batatas , Antocianinas/química , Antioxidantes/química , Humanos , Ipomoea batatas/química , Raíces de Plantas/metabolismo , Almidón/metabolismo
10.
Food Funct ; 13(21): 10912-10922, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36205145

RESUMEN

Anthocyanin nanoliposomes (ANLs) were produced by a thin film ultrasonic dispersion method to improve the stability and bioavailability of anthocyanins (ACNs) obtained from grape skin extracts. The preparation parameters were predicted to be a soy lecithin to cholesterol ratio of 80 : 19 (w/w, 2 mg of ACNs) under ultrasonication at 120 W for 3.12 min by the response surface methodology. Under the optimal conditions, the fabricated ANLs presented an encapsulation efficiency of 40.1% with an average particle size of 117 nm, a PDI of 0.254 and a ζ-potential of 8.56 mV. The stability of ACNs was improved by nanoliposome encapsulation under various temperature and light conditions. Moreover, a MKN-28 (stomach) barrier model was established to evaluate the cellular transport of ACNs before and after nanoliposome encapsulation. HPLC-DAD/MS analyses demonstrated that ACNs obtained from grape skin extracts mainly consisted of five monomers. After 180 min of transportation, peonidin-3-5-diglucoside and malvidin-3-5-diglucoside (two representative monomers) present in ANLs (0.5 mg mL-1) showed the maximum transport efficiencies of 17.25 ± 1.62% and 18.94 ± 1.05%, respectively. However, their maximum transport efficiencies were 11.68 ± 1.01% and 15.33 ± 1.24%, respectively, existing in ACNs (non-encapsulated form, 0.5 mg mL-1). Furthermore, the antiproliferative properties of ANLs were assessed in two cancer cell lines MKN-28 and HepG-2 (liver). The ANLs presented more effective antiproliferative effects towards MKN-28 than the HepG-2 cell line. This study provides theories and a practice foundation for further application of ACNs as nutraceutical and functional foods.


Asunto(s)
Antocianinas , Vitis , Antocianinas/farmacología , Antocianinas/análisis , Absorción Gástrica , Tamaño de la Partícula , Disponibilidad Biológica
11.
Molecules ; 27(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35956980

RESUMEN

Oxovitisins are a unique group of anthocyanin derivatives with a non-oxonium nature and α-pyranone (lactone) D ring on the structure. In this study, oxovitisin A was synthesized through the micro-oxidative reaction of carboxypyranomalvidin-3-O-glucoside (vitisin A) with water, and its thermostability, pH, and SO2 color stability were studied compared with its two precursors, malvidin-3-O-glucoside (Mv3glc) and vitisin A, as well as methylpyrano-malvidin-3-O-glucoside (Me-py). Results showed that oxovitisin A exhibited the highest stabilities, which were inseparably related to its noncharged structure and the additional carbonyl group on the D ring. Moreover, the antiproliferative capacity of oxovitisin A was comparatively evaluated against two human gastrointestinal cancer cell lines. Interestingly, oxovitisin A presented the strongest antiproliferative ability on MKN-28 (IC50 = 538.42 ± 50.06 µM) and Caco-2 cells (IC50 = 434.85 ± 11.87 µM) compared with two other pyranoanthocyanins. Therefore, we conclude that oxovitisin A as a highly stable anthocyanin derivative still exhibits a satisfactory antiproliferative ability.


Asunto(s)
Antocianinas , Vino , Antocianinas/química , Células CACO-2 , Glucósidos/química , Humanos , Pironas , Vino/análisis
12.
Food Funct ; 13(13): 7320-7332, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35726791

RESUMEN

This study was aimed at investigating the structural characterization, acute toxicity and protective effect of selenylated apple pectin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. Selenylated apple pectin was characterized by ion chromatography, NMR and SEC-RI-MALLS. The acute toxicity and protective effect of selenylated apple pectin against UC were investigated by gavage administration in mice. The organ state and coefficients, inflammatory cytokine (IL-6, IL-10 and TNF-α) contents in serum, GSH-Px activity and MPO content in colon tissues were also evaluated. The results indicated that selenylated apple pectin was non-toxic and contained 244.28 µgselenium per g. The monosaccharide composition with different molar ratios, different relative molecular weights and a weakened signal peak (CH2-O group) at 3-4 ppm were observed after selenylation. The selenylated apple pectin showed the protective effect against UC by down-regulating IL-6 and TNF-α contents and up-regulating the IL-10 content in serum, as well as increasing the GSH-Px activity and decreasing the MPO content in colon tissues. Moreover, DSS-induced alterations were effectively recovered by a high-dose sample. These findings provide evidence in support of selenylated apple pectin as a novel dietary selenium supplement for UC protection.


Asunto(s)
Colitis Ulcerosa , Malus , Selenio , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Interleucina-10 , Interleucina-6 , Ratones , Pectinas , Selenio/farmacología , Factor de Necrosis Tumoral alfa/farmacología
13.
Compr Rev Food Sci Food Saf ; 21(4): 3096-3128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35534086

RESUMEN

Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.


Asunto(s)
Antocianinas , Antocianinas/química , Antocianinas/metabolismo , Disponibilidad Biológica , Dieta , Estudios Prospectivos
14.
Int J Biol Macromol ; 201: 67-74, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34995661

RESUMEN

Lignin, especially Brauns native lignin (BNL), from Chinese quince (Chaenomeles sinensis) fruit represents a potential source of natural antioxidants. However, the highly inhomogeneous structure and the carbohydrate impurity reduce the antioxidant properties of BNL. Accordingly, a sequential aqueous acetone fractionation was used to prepare pure lignin fractions with homogeneous molecular structures; these fractions showed strong antioxidant properties. Analytical results showed that the yields of F50% and F60% exceeded 20% (i.e., 20.6% and 24.1%, respectively). The sugar impurities in BNL were mainly retained in the F30% and F40% fractions. For all fractions, molecular weight increased as the acetone concentration increased. The results from 2D HSQC NMR and 31P NMR indicated that the number of lignin linkages (ß-O-4', ß-ß' and ß-5') and functional groups (S-OH, G-OH, H-OH, and COOH) of these fractions varied with their molecular weights. Antioxidant assays showed that F40%, F50% and F60% had higher antioxidant properties than BNL. Overall, the study provides a simple, environmentally friendly fractionation method to prepare lignin with various structural features and strong antioxidant properties from Chinese quince fruit. These lignin fractions have promising application in some fields with high value, such as antioxidants production, biomaterials, packaging materials, and drug delivery and so on.


Asunto(s)
Lignina , Rosaceae , Acetona , China , Frutas/química , Lignina/química , Estructura Molecular , Rosaceae/química
15.
Food Chem ; 360: 129922, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33965711

RESUMEN

Starch based food packaging has been receiving increasing attention. However, the inherent poor properties of starch restrict its practical applications in the versatile material science field. In this study, a fast, simple, and environmentally friendly route to construct polyfunctional starch/tea polyphenols nanofibrous films (STNFs) by one-step temperature-assisted electrospinning was developed. The effects of introduction of tea polyphenols (TP) on the mechanical and antioxidant activity of STNFs were comprehensively investigated. Results of ABTS·+ free radical scavenging assay showed that the antioxidant activity of STNFs was endowed by addition of TP with optimum mechanical properties confirmed by tensile test. More interestingly, the hydrophobicity of STNFs was improved dramatically with increasing cross-linking time as indicated by water contact angle (WCA) measurement showing no effect on the antioxidant activity of the films. The results of this work offer a major step forward to promote functional starch-based materials for sustainable application in food packaging.


Asunto(s)
Antioxidantes/química , Embalaje de Alimentos/instrumentación , Polifenoles/química , Almidón/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Permeabilidad , Té/química , Agua/química
16.
ACS Omega ; 5(46): 29896-29902, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33251425

RESUMEN

Improving the electrochemical performance of biomass-derived carbon electrode-active materials for supercapacitor applications has recently attracted considerable attention. Herein, we develop hybrid electrode materials from rice-husk-derived porous carbon (RH-C) materials and ß-Ni(OH)2 via a facile solid-state reaction strategy comprising two steps. The prepared RH-C/Ni(OH)2 (C-Ni) was investigated using scanning electron microscopy (SEM) (energy-dispersive X-ray spectrometer (EDS)), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) to acquire the physical and chemical information, which was used to demonstrate the successful fabrication of C-Ni. Thermogravimetric analysis (TGA) measurement results confirmed that the thermal stability of C-Ni changed due to the presence of Ni(OH)2. As expected, C-Ni possesses a high capacitance of ∼952 F/g at a current density of 1.0 A/g. This result is higher than that of pure biomass-based carbon materials under the three-electrode system. This facile preparation method, which was used to synthesize the electrode-active materials, can extend to the value-added utility of other waste biomass materials as high-performing supercapacitor electrodes for energy storage applications.

17.
J Food Sci ; 85(12): 4300-4311, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33190235

RESUMEN

Small white apricot is well known as a famous fresh fruit and even a folk medicine in Xinjiang. To investigate nutritive value, antioxidant activity, and flavor of small white apricot, sugars, organic acids, total flavonoids, phenolic compounds, antioxidant activities, and volatile compounds in five apricot cultivars were examined by high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that sucrose (32.94% to 42.49%), malic acid (69.21% to 76.75%), and quercetin-3-rutinoside (72.84% to 74.05%) were the dominant sugar, organic acid, and phenolic compounds in small white apricot, respectively. The antioxidant activity reached up to 61.72 to 135.52 mg TEs 100 g-1 . Furthermore, the aroma fingerprint of the small white apricot consisted of 1-octen-3-ol, 1-dodecanol, pentanal, hexanal, (E)-2-hexenal, (E)-2-heptenal, 6-methyl-5-hepten-2-one, (E)-2-nonenal, 1-octen-3-one, ß-myrcene, and linalool, providing clear green, grassy, and fatty notes. Apricots from different cultivars possessed a similar flavor, while linalool and (E)-2-hexenal had been identified as the characteristic aroma compounds in small white apricot. The results provide a complete chemical characterization of the taste, functional ingredients and aroma of the small white apricot. PRACTICAL APPLICATION: The nutritive value, antioxidant activity and flavor of small white apricot were investigated in this study. The results will provide a theoretical basis for developing characteristic variety aroma, nutritive value, and medicinal value of small white apricot.


Asunto(s)
Antioxidantes/análisis , Ácidos Carboxílicos/análisis , Frutas/química , Odorantes/análisis , Fenoles/análisis , Prunus armeniaca/química , Azúcares/análisis , Aldehídos/análisis , China , Flavonoides/análisis , Frutas/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas/métodos , Prunus armeniaca/crecimiento & desarrollo , Microextracción en Fase Sólida/métodos , Gusto , Compuestos Orgánicos Volátiles/análisis
18.
Food Res Int ; 137: 109647, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233226

RESUMEN

Interaction between proteins and anthocyanins spontaneously occurs in most of food systems, resulting the formation of protein-bound anthocyanin compounds, and the interactions between anthocyanins and proteins might impact activity of anthocyanins. In the present study, predominant anthocyanin compounds in free anthocyanin compounds from purple sweet potato (FAC-PSP) were identified and protein in protein-bound anthocyanin compounds from purple sweet potato (p-BAC-PSP) were assayed. Furthermore, the effects of pre-treatment of cells with p-BAC-PSP and FAC-PSP on cell viability, inflammatory mediators, reactive oxygen species, cytokines and gene expression were determined in LPS-induced RAW264.7 macrophages. The results revealed 17 protein groups and pigmented polymers in p-BAC-PSP, and 3 different anthocyanins in FAC-PSP. There were no significant differences (p > 0.05) in the anti-inflammatory effect between p-BAC-PSP and FAC-PSP. p-BAC-PSP significantly (p < 0.05) reduced the expression of inducible nitric oxide synthases (iNOS) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells stimulated by LPS, thereby suppressing the release of NO and TNF-α. Moreover, p-BAC-PSP markedly inhibited LPS-induced reactive oxygen species (ROS) accumulation via heme oxygenase-1 (HO-1) and factor erythroid 2-related factor 2 (Nrf2). Further analysis revealed that p-BAC-PSP suppressed both LPS-induced activation of c-Jun N-terminal kinase (JNK), and the nuclear translocation of activator protein-1 (AP-1). Our research suggested that naturally occurring p-BAC-PSP has the potential to be a dietary supplement with anti-inflammatory effect, which would meaningful from the actual utilization points of view for purple sweet potato production industry.


Asunto(s)
Ipomoea batatas , Animales , Antocianinas/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos , Macrófagos , Ratones
19.
J Agric Food Chem ; 68(36): 9725-9732, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786859

RESUMEN

Agricultural production-caused water contamination has become an urgent environmental issue that has drawn much attention in recent years. One such contamination case is the environmental disposal of colored effluents from the food processing industry (i.e., food dyes). Effective methods for removing dye contaminants from water have been increasingly sought, and different adsorbents have been developed for this purpose. Here, polysaccharide-based hydrogels derived from cellulose were constructed and used in the removal of methylene blue (MB) (as the representative dye) from an aqueous medium (as simulated dye liquor wastewater). To improve the purification efficiency, TiO2 nanoparticles were encapsulated into cellulose nanofibers, which were consequently changed to hydrogels with respective advantages. The morphology, chemical composition, and structure of the as-prepared polysaccharide-based hydrogels and the transformation process from nanofibers to hydrogels were revealed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction, and the presence of a gel network structure and TiO2 nanoparticles was confirmed. As expected, the polysaccharide-based hydrogels exhibited good MB removal performance because of their synergistic effects of absorption and photocatalytic degradation. Furthermore, the cell cytotoxicity test showed that the polysaccharide-based hydrogels possessed good biocompatibility. The facile, noncytotoxic, and general strategy presented here could be extended to the preparation of other polysaccharide-based hydrogel materials and has good prospects for application in wastewater treatment.


Asunto(s)
Celulosa/química , Colorantes/química , Hidrogeles/química , Nanofibras/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Aguas Residuales/química , Purificación del Agua/instrumentación
20.
Food Chem ; 314: 126219, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978715

RESUMEN

In order to further determine the interaction between polysaccharides and polyphenols, the complex of soluble dietary fiber (SDF) and two phenols were prepared. According to the results, at the conditions of pH = 4, temperature = 60 °C, concentration ratio of polysaccharide and phenol = 4:1, the maximum adsorption of catechin and gallic acid in the SDF complex was 155.74 and 134.05 mg/g, respectively. Due to UV-Vis and FT-IR analysis, it could be speculated that the interaction between SDF and phenols resulted in chemical combination. Furthermore, the monosaccharide composition and molecular weight distribution of SDF were significantly altered after conjugated with phenols. However, it showed no significant difference between two different SDF-phenol complexes, referring to GC and GPC data. The surface of SDF-phenol complex was loose with uniform arrangement, while the physical mixture surface was porous with irregular holes and cracks. Both SDF-CC and SDF-GA complex indicated higher thermal stability than the mixtures by TGA analysis.


Asunto(s)
Fibras de la Dieta/análisis , Lotus/química , Raíces de Plantas/química , Polifenoles/análisis , Catequina/análisis , Carbohidratos de la Dieta/análisis , Ácido Gálico , Monosacáridos/análisis , Fenoles/análisis , Polifenoles/química , Polisacáridos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA