Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Mol Ther ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910328

RESUMEN

Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.

2.
Kidney Int ; 106(1): 50-66, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697478

RESUMEN

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.


Asunto(s)
Nefropatías Diabéticas , Progresión de la Enfermedad , Glomeruloesclerosis Focal y Segmentaria , Túbulos Renales Proximales , Podocitos , Podocitos/metabolismo , Podocitos/patología , Animales , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/etiología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Humanos , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Ratones , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Apoptosis , Endocitosis
3.
Nat Rev Nephrol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724717

RESUMEN

Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.

4.
Kidney Int Rep ; 9(5): 1354-1368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707807

RESUMEN

Introduction: Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods: We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion: Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.

6.
medRxiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732187

RESUMEN

Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.

7.
Physiol Rep ; 11(13): e15688, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37423891

RESUMEN

Morphometric estimates of mean or individual glomerular volume (MGV, IGV) have biological implications, over and above qualitative histologic data. However, morphometry is time-consuming and requires expertise limiting its utility in clinical cases. We evaluated MGV and IGV using plastic- and paraffin-embedded tissue from 10 control and 10 focal segmental glomerulosclerosis (FSGS) mice (aging and 5/6th nephrectomy models) using the gold standard Cavalieri (Cav) method versus the 2-profile and Weibel-Gomez (WG) methods and a novel 3-profile method. We compared accuracy, bias and precision, and quantified results obtained when sampling differing numbers of glomeruli. In both FSGS and controls, we identified an acceptable precision for MGV of 10-glomerular sampling versus 20-glomerular sampling using the Cav method, while 5-glomerular sampling was less precise. In plastic tissue, 2- or 3-profile MGVs showed greater concordance with MGV when using Cav, versus MGV with WG. IGV comparisons using the same glomeruli reported a consistent underestimation bias with both 2- or 3-profile methods versus the Cav method. FSGS glomeruli showed wider variations in bias estimation than controls. Our 3-profile method offered incremental benefit to the 2-profile method in both IGV and MGV estimation (improved correlation coefficient, Lin's concordance and reduced bias). In our control animals, we quantified a shrinkage artifact of 52% from tissue processed for paraffin-embedded versus plastic-embedded tissue. FSGS glomeruli showed overall reduced shrinkage albeit with variable artifact signifying periglomerular/glomerular fibrosis. A novel 3-profile method offers slightly improved concordance with reduced bias versus 2-profile. Our findings have implications for future studies using glomerular morphometry.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Animales , Ratones , Artefactos , Glomérulos Renales/patología , Enfermedades Renales/patología , Nefrectomía
8.
Kidney Int ; 102(1): 58-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483525

RESUMEN

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Asunto(s)
Factor 4 Similar a Kruppel , Microangiopatías Trombóticas , Animales , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Endotelio , Humanos , Glomérulos Renales/patología , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Microangiopatías Trombóticas/patología
9.
Diabetes ; 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957485

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

10.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634362

RESUMEN

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Asunto(s)
Lesión Renal Aguda , Ácidos Grasos/metabolismo , Factores de Transcripción de Tipo Kruppel , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Riñón , Túbulos Renales Proximales , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados
11.
Diabetes ; 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702781

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

12.
Mol Nutr Food Res ; 65(23): e2000499, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599622

RESUMEN

SCOPE: Diets with low content in advanced glycation end products (AGEs) lead to beneficial properties in highly prevalent age-related diseases. To shed light on the mechanisms behind, the changes induced by a low AGE dietary intervention in the circulating metabolome are analyzed. METHODS AND RESULTS: To this end, 20 non-diabetic patients undergoing peritoneal dialysis are randomized to continue their usual diet or to one with a low content of AGEs for 1 month. Then, plasmatic metabolome and lipidomes are analyzed by liquid-chromatography coupled to mass spectrometry. The levels of defined AGE structures are also quantified by ELISA and by mass-spectrometry. The results show that the low AGE diet impinged significant changes in circulating metabolomes (166 molecules) and lipidomes (91 lipids). Metabolic targets of low-AGE intake include sphingolipid, ether-lipids, and glycerophospholipid metabolism. Further, it reproduces some of the plasma characteristics of healthy aging. CONCLUSION: The finding of common pathways induced by low-AGE diets with previous metabolic traits implicated in aging, insulin resistance, and obesity suggest the usefulness of the chosen approach and supports the potential extension of this study to other populations.


Asunto(s)
Productos Finales de Glicación Avanzada , Resistencia a la Insulina , Dieta , Humanos , Lipidómica , Metaboloma
13.
Sci Adv ; 7(36): eabg6600, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516901

RESUMEN

Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)­αVß6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin ß 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.

14.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33998601

RESUMEN

Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/prevención & control , Proteínas del Ojo/biosíntesis , Histonas/metabolismo , Podocitos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteínas del Ojo/genética , Histonas/genética , Ratones , Ratones Noqueados , Podocitos/patología
15.
Kidney Med ; 3(4): 653-658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33942030

RESUMEN

Recent case reports suggest that coronavirus disease 2019 (COVID-19) is associated with collapsing glomerulopathy in African Americans with apolipoprotein L1 gene (APOL1) risk alleles; however, it is unclear whether disease pathogenesis is similar to HIV-associated nephropathy. RNA sequencing analysis of a kidney biopsy specimen from a patient with COVID-19-associated collapsing glomerulopathy and APOL1 risk alleles (G1/G1) revealed similar levels of APOL1 and angiotensin-converting enzyme 2 (ACE2) messenger RNA transcripts as compared with 12 control kidney samples downloaded from the GTEx (Genotype-Tissue Expression) Portal. Whole-genome sequencing of the COVID-19-associated collapsing glomerulopathy kidney sample identified 4 indel gene variants, 3 of which are of unknown significance with respect to chronic kidney disease and/or focal segmental glomerulosclerosis. Molecular profiling of the kidney demonstrated activation of COVID-19-associated cell injury pathways such as inflammation and coagulation. Evidence for direct severe acute respiratory syndrome coronavirus 2 infection of kidney cells was lacking, which is consistent with the findings of several recent studies. Interestingly, immunostaining of kidney biopsy sections revealed increased expression of phospho-STAT3 (signal transducer and activator of transcription 3) in both COVID-19-associated collapsing glomerulopathy and HIV-associated nephropathy as compared with control kidney tissue. Importantly, interleukin 6-induced activation of STAT3 may be a targetable mechanism driving COVID-19-associated acute kidney injury.

16.
Nat Rev Nephrol ; 17(3): 185-204, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32943753

RESUMEN

Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.


Asunto(s)
Enfermedades Renales/metabolismo , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Humanos , Enfermedades Renales/patología , Glomérulos Renales/patología
17.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883700

RESUMEN

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Asunto(s)
Lesión Renal Aguda/etiología , COVID-19/complicaciones , SARS-CoV-2 , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Lesión Renal Aguda/orina , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , Femenino , Hematuria/etiología , Mortalidad Hospitalaria , Hospitales Privados/estadística & datos numéricos , Hospitales Urbanos/estadística & datos numéricos , Humanos , Incidencia , Pacientes Internos , Leucocitos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Proteinuria/etiología , Diálisis Renal , Estudios Retrospectivos , Resultado del Tratamiento , Orina/citología
18.
Nephrol Dial Transplant ; 36(3): 430-441, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33097961

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a common cause of morbidity and mortality in human immunodeficiency virus (HIV)-positive individuals. Among the HIV-related kidney diseases, HIV-associated nephropathy (HIVAN) is a rapidly progressive renal disease characterized by collapsing focal glomerulosclerosis (GS), microcystic tubular dilation, interstitial inflammation and fibrosis. Although the incidence of end-stage renal disease due to HIVAN has dramatically decreased with the widespread use of antiretroviral therapy, the prevalence of CKD continues to increase in HIV-positive individuals. Recent studies have highlighted the role of apoptosis signal-regulating kinase 1 (ASK1) in driving kidney disease progression through the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase and selective ASK-1 inhibitor GS-444217 was recently shown to reduce kidney injury and disease progression in various experimental models. Therefore we examined the efficacy of ASK1 antagonism by GS-444217 in the attenuation of HIVAN in Tg26 mice. METHODS: GS-444217-supplemented rodent chow was administered in Tg26 mice at 4 weeks of age when mild GS and proteinuria were already established. After 6 weeks of treatment, the kidney function assessment and histological analyses were performed and compared between age- and gender-matched control Tg26 and GS-444217-treated Tg26 mice. RESULTS: GS-444217 attenuated the development of GS, podocyte loss, tubular injury, interstitial inflammation and renal fibrosis in Tg26 mice. These improvements were accompanied by a marked reduction in albuminuria and improved renal function. Taken together, GS-4442217 attenuated the full spectrum of HIVAN pathology in Tg26 mice. CONCLUSIONS: ASK1 signaling cascade is central to the development of HIVAN in Tg26 mice. Our results suggest that the select inhibition of ASK1 could be a potential adjunctive therapy for the treatment of HIVAN.


Asunto(s)
Nefropatía Asociada a SIDA/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibrosis/prevención & control , Inflamación/prevención & control , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteinuria/prevención & control , Nefropatía Asociada a SIDA/metabolismo , Nefropatía Asociada a SIDA/patología , Animales , Ratones , Ratones Transgénicos
19.
Kidney Int ; 98(3): 601-614, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32739209

RESUMEN

Transforming growth factor-ß (TGF-ß) is a central mediator of diabetic nephropathy. The effect of TGF-ß, mediated by the type I TGF-ß receptor, ALK5, and subsequent Smad2/3 activation results in podocyte apoptosis and loss. Previously, we demonstrated that the genetic deletion of the BMP and Activin Membrane-Bound Inhibitor (BAMBI), a negative modulator TGF-ß signaling, accelerates diabetic nephropathy in mice. This was associated with heightened ALK1-mediated activation of Smad1/5 in the glomerular endothelial cells (ECs). Therefore, to evaluate the glomerular cell-specific effects of TGF-ß in diabetic nephropathy we examined the effects of the podocyte- or EC-specific loss of Bambi (Pod-Bambi-/- or EC-Bambi-/-) in streptozotocin-induced diabetic mice with endothelial nitric oxide synthase deficiency. Interestingly, although hyperglycemia and body weight loss were similar in all groups of diabetic mice, significant hypertension was present only in the diabetic EC-Bambi-/- mice. While the podocyte or EC-specific loss of BAMBI both accelerated the progression of diabetic nephropathy, the worsened podocyte injury and loss observed in the diabetic Pod-Bambi-/- mice were associated with enhanced Smad3 activation. Increased Smad1/5 activation and EC proliferation were apparent only in the glomeruli of diabetic EC-Bambi-/- mice. The enhanced Smad1/5 activation in diabetic EC-Bambi-/- mice was associated with increased glomerular expression of plasmalemma vesicle-associated protein, pointing to the involvement of immature or dedifferentiated glomerular ECs in diabetic nephropathy. Notably, diabetic EC-Bambi-/- mice displayed podocyte injury and loss that were comparable to diabetic Pod-Bambi-/- mice. Thus, our results highlight the glomerular cell-specific contribution of TGF-ß signaling and the intricate cross-talk between injured glomerular cells in the progression of diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/genética , Células Endoteliales , Ratones , Factor de Crecimiento Transformador beta , Factores de Crecimiento Transformadores
20.
J Am Soc Nephrol ; 31(10): 2372-2391, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737144

RESUMEN

BACKGROUND: Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS: Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS: Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS: LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.


Asunto(s)
Actinas/fisiología , Filamentos Intermedios/fisiología , Enfermedades Renales/patología , Glomérulos Renales/patología , Podocitos/patología , Vimentina/fisiología , Animales , Técnicas de Cultivo de Célula , Proteínas del Citoesqueleto/fisiología , Humanos , Enfermedades Renales/etiología , Proteínas con Dominio LIM/fisiología , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...