Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1368284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638348

RESUMEN

Promoters are one of the most critical elements in regulating gene expression. They are considered essential biotechnological tools for heterologous protein production. The one most widely used in plants is the 35S promoter from cauliflower mosaic virus. However, our study for the first time discovered the 35S promoter reduced the expression of exogenous proteins under increased antibiotic stress. We discovered an endogenous strong promoter from duckweed named LpSUT2 that keeps higher initiation activity under antibiotic stress. Stable transformation in duckweed showed that the gene expression of eGFP in the LpSUT2:eGFP was 1.76 times that of the 35S:eGFP at 100 mg.L-1 G418 and 6.18 times at 500 mg.L-1 G418. Notably, with the increase of G418 concentration, the gene expression and the fluorescence signal of eGFP in the 35S:eGFP were weakened, while the LpSUT2:eGFP only changed slightly. This is because, under high antibiotic stress, the 35S promoter was methylated, leading to the gene silencing of the eGFP gene. Meanwhile, the LpSUT2 promoter was not methylated and maintained high activity. This is a previously unknown mechanism that provides us with new insights into screening more stable promoters that are less affected by environmental stress. These outcomes suggest that the LpSUT2 promoter has a high capacity to initiate the expression of exogenous proteins. In conclusion, our study provides a promoter tool with potential application for plant genetic engineering and also provides new insights into screening promoters.

2.
Microb Cell Fact ; 22(1): 114, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322438

RESUMEN

BACKGROUND: Chinese Nong-favor daqu, the presentative liquor starter of Baijiu, has been enriched with huge amounts of enzymes in degrading various biological macromolecules by openly man-made process for thousand years. According to previous metatranscriptomics analysis, plenty of α-glucosidases were identified to be active in NF daqu and played the key role in degrading starch under solid-state fermentation. However, none of α-glucosidases was characterized from NF daqu, and their actual functions in NF daqu were still unknown. RESULTS: An α-glucosidase (NFAg31A, GH31-1 subfamily), the second highest expressed α-glucosidases in starch degradation of NF daqu, was directly obtained by heterologous expression in Escherichia coli BL21 (DE3). NFAg31A exhibited the highest sequence identities of 65.8% with α-glucosidase II from Chaetomium thermophilum, indicating its origin of fungal species, and it showed some similar features with homologous α-glucosidase IIs, i.e., optimal activity at pH ~ 7.0 and litter higher temperature of 45 ℃, well stability at 41.3 ℃ and a broad pH range of pH 6.0 to pH 10.0, and preference on hydrolyzing Glc-α1,3-Glc. Besides this preference, NFAg31A showed comparable activities on Glc-α1,2-Glc and Glc-α1,4-Glc, and low activity on Glc-α1,6-Glc, indicating its broad specificities on α-glycosidic substrates. Additionally, its activity was not stimulated by any of those detected metal ions and chemicals, and could be largely inhibited by glucose under solid-state fermentation. Most importantly, it exhibited competent and synergistic effects with two characterized α-amylases of NF daqu on hydrolyzing starch, i.e., all of them could efficiently degrade starch and malto-saccharides, two α-amylases showed advantage in degrading starch and long-chain malto-saccharides, and NFAg31A played the competent role with α-amylases in degrading short-chain malto-saccharides and the irreplaceable contribution in hydrolyzing maltose into glucose, thus alleviating the product inhibitions of α-amylases. CONCLUSIONS: This study provides not only a suitable α-glucosidase in strengthening the quality of daqu, but also an efficient way to reveal roles of the complicated enzyme system in traditional solid-state fermentation. This study would further stimulate more enzyme mining from NF daqu, and promote their actual applications in solid-state fermentation of NF liquor brewing, as well as in other solid-state fermentation of starchy industry in the future.


Asunto(s)
Bebidas Alcohólicas , Fermentación , alfa-Glucosidasas , alfa-Amilasas , alfa-Glucosidasas/genética , Glucosa , Almidón , Especificidad por Sustrato
3.
Microbiol Res ; 268: 127294, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592577

RESUMEN

Biological process is an effective strategy to improve soil quality in agroecosystems. Sweetpotato has long been cultivated in barren rocky soil (BRS) to improve soil fertility and obtain considerably high yield. However, how sweetpotato cultivation affects soil quality is still unclear. We cultured sweetpotato in virgin BRS, and investigated its transcriptome, rhizospheric microbial community and soil properties. A high sweetpotato yield (22.69 t.ha-1) was obtained through upregulating the expression of genes associated with stress resistance, nitrogen/phosphorus/potassium (N/P/K) uptake, and root exudates transport. Meanwhile, the rhizospheric microbial diversity in BRS increased, and the rhizospheric microbial community structure became more similar to that of fertile soil, which might benefit from the increased root exudates. Notably, the relative abundances of N-fixing and P/K-solubilizing microbes increased, and the copy number of nifH increased 6.67 times. Moreover, the activities of acid, neutral, and alkaline phosphatases increased strongly from 0.63, 0.02, and 1.15-1.58, 0.31, and 2.11 mg phenol·g-1·d-1, respectively, and total carbon, dissolved organic carbon, available N/P content also increased, while bulk density and pH of BRS decreased, indicating the enhanced soil fertility. Our study found sweetpotato cultivation improved BRS quality through shaping microbial communities, which has important guiding significance for sustainable agriculture.


Asunto(s)
Ipomoea batatas , Microbiota , Suelo/química , Agricultura , Plantas , Microbiología del Suelo
4.
Biomolecules ; 12(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551310

RESUMEN

Molecular farming utilizes plants as a platform for producing recombinant biopharmaceuticals. Duckweed, the smallest and fastest growing aquatic plant, is a promising candidate for molecular farming. However, the efficiency of current transformation methods is generally not high in duckweed. Here, we developed a fast and efficient transformation procedure in Lemna minor ZH0403, requiring 7-8 weeks from screening calluses to transgenic plants with a stable transformation efficiency of 88% at the DNA level and 86% at the protein level. We then used this transformation system to produce chicken interleukin-17B (chIL-17B). The plant-produced chIL-17B activated the NF-κB pathway, JAK-STAT pathway, and their downstream cytokines in DF-1 cells. Furthermore, we administrated chIL-17B transgenic duckweed orally as an immunoadjuvant with mucosal vaccine against infectious bronchitis virus (IBV) in chickens. Both IBV-specific antibody titer and the concentration of secretory immunoglobulin A (sIgA) were significantly higher in the group fed with chIL-17B transgenic plant. This indicates that the duckweed-produced chIL-17B enhanced the humoral and mucosal immune responses. Moreover, chickens fed with chIL-17B transgenic plant demonstrated the lowest viral loads in different tissues among all groups. Our work suggests that cytokines are a promising adjuvant for mucosal vaccination through the oral route. Our work also demonstrates the potential of duckweed in molecular farming.


Asunto(s)
Adyuvantes de Vacunas , Araceae , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Quinasas Janus/genética , Transducción de Señal , Pollos , Factores de Transcripción STAT/genética , Citocinas/metabolismo , Adyuvantes Inmunológicos/farmacología , Araceae/genética , Araceae/metabolismo , Transformación Genética
5.
Front Plant Sci ; 13: 996618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352881

RESUMEN

The local endocytosis of membrane proteins is critical for many physiological processes in plants, including the regulation of growth, development, nutrient absorption, and osmotic stress response. Much of our knowledge on the local endocytosis of plasma membrane (PM) protein only focuses on the polar growth of pollen tubes in plants and neuronal axon in animals. However, the role of local endocytosis of PM proteins in guard cells has not yet been researched. Here, we first cloned duckweed SUT2 (sucrose transporter 2) protein and then conducted subcellular and histological localization of the protein. Our results indicated that LpSUT2 (Landoltia punctata 0202 SUT2) is a PM protein highly expressed on guard cells. In vitro experiments on WT (wild type) lines treated with high sucrose concentration showed that the content of ROS (reactive oxygen species) in guard cells increased and stomatal conductance decreased. We observed the same results in the lines after overexpression of the LpSUT2 gene with newfound local endocytosis of LpSUT2. The local endocytosis mainly showed that LpSUT2 was uniformly distributed on the PM of guard cells in the early stage of development, and was only distributed in the endomembrane of guard cells in the mature stage. Therefore, we found the phenomenon of guard cell LpSUT2 local endocytosis through the changes of duckweed stomata and concluded that LpSUT2 local endocytosis might be dependent on ROS accumulation in the development of duckweed guard cells. This paper might provide future references for the genetic improvement and water-use efficiency in other crops.

6.
Environ Sci Pollut Res Int ; 29(34): 52003-52012, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35257341

RESUMEN

The purification of micro-polluted water for drinking water can play an important role in solving water crisis. To investigate the effects of spectral composition on nutrient removal and biofuel feedstock production using duckweed, Landoltia punctata was cultivated in different spectral compositions in micro-polluted water. Results showed that the nitrogen and phosphorus removal efficiency were 99.4% and 93.5% at an recommended red and blue light photon intensity mixture ratio of 2:1. Meanwhile, maximum growth rate of duckweed (11.37 g/m2/day) was observed at red/blue = 2:1. In addition, maximum starch accumulation rate of duckweed was found to be 6.12 g/m2/day, with starch content of 36.63% at red/blue = 4:1, which was three times higher when compared to that of white light. Moreover, the recommended ratio of red and blue light was validated by economic efficiency analysis of energy consumptions. These findings provide a sustainable environmental restoration method to transform water micro-pollutants to available substances.


Asunto(s)
Araceae , Purificación del Agua , Biocombustibles , Almidón , Agua , Purificación del Agua/métodos
7.
Front Microbiol ; 12: 761972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956124

RESUMEN

Phosphate-solubilizing bacteria (PSB) can alleviate available phosphorus (AP)-deficiency without causing environmental pollution like chemical phosphate fertilizers. However, the research and application of PSB on the barren rocky soil is very rare. We screened six PSB from sweetpotato rhizosphere rocky soil. Among them, Ochrobactrum haematophilum FP12 showed the highest P-solubilizing ability of 1,085.00 mg/L at 7 days, which was higher than that of the most reported PSB. The assembled genome of PSB FP12 was 4.92 Mb with P-solubilizing and plant growth-promoting genes. In an AP-deficient environment, according to transcriptome and metabolomics analysis, PSB FP12 upregulated genes involved in gluconic acid synthesis and the tricarboxylic acid cycle, and increased the concentration of gluconic acid and malic acid, which would result in the enhanced P-solubilizing ability. Moreover, a series of experiments in the laboratory and field confirmed the efficient role of the screened PSB on significantly increasing AP in the barren rocky soil and promoting sweetpotato yield. So, in this study, we screened highly efficient PSB, especially suitable for the barren rocky soil, and explored the P-solubilizing mechanism. The research will reduce the demand for chemical phosphate fertilizers and promote the environment-friendly agricultural development.

8.
Microb Cell Fact ; 20(1): 80, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827572

RESUMEN

BACKGROUND: Daqu is the most important fermentation starter for Chinese liquor, with large number of microbes and enzymes being openly enriched in the Daqu system over thousands of years. However, only a few enzymes have been analyzed with crude protein for total liquefying power and saccharifying power of Daqu. Therefore, the complex enzymatic system present in Daqu has not been completely characterized. Moreover, their pivotal and complicated functions in Daqu are completely unknown. RESULTS: In this study, a novel α-amylase NFAmy13B, from GH13_5 subfamily (according to the Carbohydrate-Active enZYmes Database, CAZy) was successfully heterologous expressed by Escherichia coli from Chinese Nong-flavor (NF) Daqu. It exhibited high stability ranging from pH 5.5 to 12.5, and higher specific activity, compared to other GH13_5 fungal α-amylases. Moreover, NFAmy13B did not show activity loss and retained 96% residual activity after pre-incubation at pH 11 for 21 h and pH 12 for 10 h, respectively. Additionally, 1.25 mM Ca2+ significantly improved its thermostability. NFAmy13B showed a synergistic effect on degrading wheat starch with NFAmy13A (GH13_1), another α-amylase from Daqu. Both enzymes could cleave maltotetraose and maltopentaose in same degradation pattern, and only NFAmy13A could efficiently degrade maltotriose. Moreover, NFAmy13B showed higher catalytic efficiency on long-chain starch, while NFAmy13A had higher catalytic efficiency on short-chain maltooligosaccharides. Their different catalytic efficiencies on starch and maltooligosaccharides may be caused by their discrepant substrate-binding region. CONCLUSIONS: This study mined a novel GH13_5 fungal α-amylase (NFAmy13B) with outstanding alkali resistance from Nong-flavor (NF) Daqu. Furthermore, its synergistic effect with NFAmy13A (GH13_1) on hydrolyzing wheat starch was confirmed, and their possible contribution in NF Daqu was also speculated. Thus, we not only provide a candidate α-amylase for industry, but also a useful strategy for further studying the interactions in the complex enzyme system of Daqu.


Asunto(s)
Bebidas Alcohólicas/microbiología , Hongos/enzimología , alfa-Amilasas/aislamiento & purificación , Hidrólisis , Almidón/metabolismo
9.
Environ Pollut ; 277: 116834, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714787

RESUMEN

In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.


Asunto(s)
Compuestos de Amonio , Araceae , Araceae/genética , Carbono , Nitrógeno , Almidón
10.
Food Chem ; 343: 128392, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191012

RESUMEN

Duckweeds have long been consumed as vegetables in several South Asian countries. In this study of the chemical constituents of duckweed Landoltia punctata, a new compound, apigenin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (1), and a previously LC-MS identified compound, quercetin 3-O-ß-D-apiofuranoside (3), as well as three known compounds, luteolin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (2), apigenin 6-C-ß-D-glucopyranoside (4), and luteolin 7-O-neohespirodise (5), were isolated and identified on the basis of MS and NMR spectroscopic analyses and chemical derivations. In total, 24 flavonoids were identified in L. punctata 0001 by UPLC-ESI-QTOF-MS2. In DPPH and ABTS assays, 3 exhibited significant antioxidant activity with IC50 values of 4.03 ± 1.31 µg/mL and 14.9 ± 2.28 µg/mL, respectively. In in vivo antioxidant activity assays, 1 significantly increased the survival rate of juglone-exposed Caenorhabditis elegans by 2 to 3-fold, and by 75% following thermal damage. Compounds 1-5 exhibited moderate scavenging capacities of intracellular reactive oxygen species in C. elegans exposed to H2O2.


Asunto(s)
Antioxidantes/química , Araceae/química , Flavonoides/análisis , Animales , Antioxidantes/farmacología , Araceae/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Flavonoides/farmacología , Peróxido de Hidrógeno/farmacología , Naftoquinonas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masa por Ionización de Electrospray
11.
Front Microbiol ; 11: 678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351491

RESUMEN

Sweetpotato can be cultivated in the reclaimed rocky soil in Sichuan Basin, China, which benefits from the release of mineral nutrients in the rocky soil by microorganisms. Shortage of nitrogen (N) in the rocky soil limits sweetpotato yield, which can be compensated through N fertilization. Whereas high N fertilization inhibits biological N fixation and induces unintended environmental consequences. However, the effect of low N fertilization on microorganism community and sweetpotato yield in the N-deficient rocky soil is still unclear. We added a low level of 1.5 g urea/m2 to a rocky soil cultivated with sweetpotato, and measured rocky soil physiological and biochemical properties, rhizosphere microbial diversity, sweetpotato physiological properties and transcriptome. When cultivating sweetpotato in the rocky soil, low N fertilization (1.5 g urea/m2) not only improved total N (TN) and available N (AN) in the rocky soil, but also increased available phosphorus (AP), available potassium (AK), and nitrogenase and urease activity. Interestingly, although low N fertilization could reduce bacterial diversity through affecting sweetpotato root exudates and rocky soil properties, the relative abundance of P and K-solubilizing bacteria, N-fixing and urease-producing bacteria increased under low N fertilization, and the relative abundance of plant pathogens decreased. Furthermore, low N fertilization increased the phytohormones, such as zeatin riboside, abscisic acid, and methyl jasmonate contents in sweetpotato root. Those increases were consistent with our transcriptome findings: the inhibition of the lignin synthesis, the promotion of the starch synthesis, and the upregulated expression of Expansin, thus resulting in promoting the formation of tuberous roots and further increasing the sweetpotato yield by half, up to 3.3 kg/m2. This study indicated that low N fertilization in the N-deficient rocky soil improved this soil quality through affecting microorganism community, and further increased sweetpotato yield under regulation of phytohormones pathway.

12.
Front Microbiol ; 10: 472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930875

RESUMEN

Jiang-flavor (JF) daqu is a liquor starter used for production of JF baijiu, a well-known distilled liquor in China. Although a high temperature stage (70°C) is necessary for qualifying JF daqu, little is known regarding its active microbial community and functional enzymes, along with its role in generating flavor precursors for JF baijiu aroma. In this investigation, based on metatranscriptomics, fungi, such as Aspergillus and Penicillium, were identified as the most active microbial members and 230 carbohydrate-active enzymes were identified as potential saccharifying enzymes at 70°C of JF daqu. Notably, most of enzymes in identified carbohydrate and energy pathways showed lower expression levels at 70°C of JF daqu than those at the high temperature stage (62°C) of Nong-flavor (NF) daqu, indicating lowering capacities of saccharification and fermentation by high temperature stage. Moreover, many enzymes, especially those related to the degradation of aromatic compounds, were only detected with low expression levels at 70°C of JF daqu albeit not at 62°C of NF daqu, indicating enhancing capacities of generating special trace aroma compounds in JF daqu by high temperature stage. Additionally, most of enzymes related to those capacities were highly expressed at 70°C by fungal genus of Aspergillus, Coccidioides, Paracoccidioides, Penicillium, and Rasamsonia. Therefore, this study not only sheds light on the crucial functions of high temperature stage but also paves the way to improve the quality of JF baijiu and provide active community and functional enzymes for other fermentation industries.

13.
Int J Biol Macromol ; 121: 183-190, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30268756

RESUMEN

Chinese Nong-flavor (NF) daqu has been enriched with plenty of active enzymes by man-made environment for thousand years. Based on our previous metatranscriptomics, an endo-ß-glucanase gene (NFEg16A), which showed high expression level in NF daqu, was directly obtained and expressed in Escherichia coli BL21 (DE3). NFEg16A shared the highest sequence identity of 87% with endo-1,3-1,4-ß-glucanase from Paecilomyces thermophile. It was optimally active at pH 6.5 and 60 °C and highly stable (>75% residual activity) at pH 3-8 and temperature 30-90 °C. The activity of NFEg16A was strongly inhibited by 10 mM Fe3+ and Hg2+. Compared with endoglucanases with high similarities, NFEg16A was more stable at 70 °C and had higher half-lives of 3.4 h and 1.4 h at 80 °C and 90 °C, respectively. Its specific activity was 85.3 U/mg on barley ß-glucan. Moreover, NFEg16A could efficiently hydrolyze substrate at high concentration of 15 mg/mL, and released glucose and cellobiose as its main end-products. Therefore, this work to some extent verified the important role of NFEg16A in NF daqu, and it would stimulate the acquisition of more enzymes from NF daqu to improve the baijiu quality in future. High thermostability of NFEg16A could also strengthen its potential applications in feed industry.


Asunto(s)
Bebidas Alcohólicas/microbiología , Celulasa/química , Celulasa/metabolismo , Hongos/enzimología , Perfilación de la Expresión Génica , Temperatura , Secuencia de Aminoácidos , Celulasa/genética , Clonación Molecular , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Especificidad por Sustrato
14.
Plant Mol Biol ; 98(4-5): 319-331, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30298427

RESUMEN

The Lemnaceae, known as duckweed, the smallest flowering aquatic plant, shows promise as a plant bioreactor. For applying this potential plant bioreactor, establishing a stable and efficient genetic transformation system is necessary. The currently favored callus-based method for duckweed transformation is time consuming and genotype limited, as it requires callus culture and regeneration, which is inapplicable to many elite duckweed strains suitable for bioreactor exploitation. In this study, we attempted to establish a simple frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor, one of the most widespread duckweed species in the world. To evaluate the feasibility of the new transformation system, the gene CYP710A11 was overexpressed to improve the yield of stigmasterol, which has multiple medicinal purposes. Three L. minor strains, ZH0055, D0158 and M0165, were transformed by both a conventional callus transformation system (CTS) and the simple frond transformation system (FTS). GUS staining, PCR, quantitative PCR and stigmasterol content detection showed that FTS can produce stable transgenic lines as well as CTS. Moreover, compared to CTS, FTS can avoid the genotype constraints of callus induction, thus saving at least half of the required processing time (CTS took 8-9 months while FTS took approximately 3 months in this study). Therefore, this transformation system is feasible in producing stable transgenic lines for a wide range of L. minor genotypes.


Asunto(s)
Agrobacterium tumefaciens/genética , Alismatales/genética , Ingeniería Genética/métodos , Alismatales/metabolismo , Reactores Biológicos , Sistema Enzimático del Citocromo P-450/genética , Vectores Genéticos/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Estigmasterol/metabolismo , Transformación Genética/genética
15.
Microb Cell Fact ; 17(1): 30, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29471820

RESUMEN

BACKGROUND: Chinese Nong-flavor (NF) liquor is continuously and stably produced by solid-state fermentation technology for 1000 years, resulting in enrichment of special microbial community and enzymes system in its starter. Based on traditional culture-dependent methods, these functional enzymes are hardly obtained. According to our previous metatranscriptomic analysis, which identifies plenty of thermostable carbohydrate-active enzymes in NF liquor starter, the aim of this study is to provide a direct and efficient way to mine these thermostable enzymes. RESULTS: In present study, an alpha-amylase (NFAmy13A) gene, which showed the highest expression level of enzymes in starch degradation at high temperature stage (62 °C), was directly obtained by functional metatranscriptomics from Chinese Nong-flavor liquor starter and expressed in Pichia pastoris. NFAmy13A had a typical signal peptide and shared the highest sequence identity of 64% with α-amylase from Aspergillus niger. The recombinant enzyme of NFAmy13A showed an optimal pH at 5.0-5.5 and optimal temperature at 60 °C. NFAmy13A was activated and stabilized by Ca2+, and its half-lives at 60 and 70 °C were improved significantly from 1.5 and 0.4 h to 16 and 0.7 h, respectively, in the presence of 10 mM CaCl2. Meanwhile, Hg2+, Co2+ and SDS largely inhibited its activity. NFAmy13A showed the maximum activity on amylopectin, followed by various starches, amylose, glycogen, and pullulan, and its specificity activity on amylopectin was 200.4 U/mg. Moreover, this α-amylase efficiently hydrolyzed starches (from corn, wheat, and potato) at high concentrations up to 15 mg/ml. CONCLUSIONS: This study provides a direct way to mine active enzymes from man-made environment of NF liquor starter, by which a fungal thermostable α-amylase (NFAmy13A) is successfully obtained. The good characteristics of NFAmy13A in degrading starch at high temperature are consistent with its pivotal role in solid-state fermentation of NF liquor brewing. This work would stimulate mining more enzymes from NF liquor starter and studying their potentially synergistic roles in NF liquor brewing, thus paving the way toward the optimization of liquor production and improvement of liquor quality in future.


Asunto(s)
Bebidas Alcohólicas/análisis , alfa-Amilasas/metabolismo , Pueblo Asiatico , Aromatizantes , Humanos
16.
RSC Adv ; 8(32): 17927-17937, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35542060

RESUMEN

The polyculture of different duckweed species is likely to integrate their advantages in removing pollutants and starch accumulation. Here, pilot-scale comparisons of three duckweed species (Spirodela polyrhiza K1, Lemna minor K2 and Landoltia punctata K3) in monoculture and polyculture were investigated. Results showed that the TN (total nitrogen) and TP (total phosphorus) in wastewater decreased from 6.0 and 0.56 mg L-1 to below 0.5 and 0.1 mg L-1, respectively. Namely, the water quality improved to Grade II under the Chinese standard. The highest TN and TP removal efficiencies were found to be 99.1% and 90.8% in the polyculture. Besides, the starch content of S. polyrhiza K1, L. minor K2, L. punctata K3 and the polyculture reached 24.8%, 32.3%, 39.3% and 36.3%, respectively. Accordingly, their average starch accumulation rates were 1.65, 2.15, 3.11 and 2.72 g m-2 d-1, respectively. Our results suggested that L. punctata K3 was a promising energy feedstock due to it having the highest starch production. The advantages of different duckweed species were investigated. In the polyculture, the pollutants were efficiently removed from wastewater, with a high starch accumulation. This study supplies a new insight into the application of duckweed in eutrophic water advanced treatment coupled with starch production.

17.
Sci Rep ; 7(1): 14577, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109406

RESUMEN

Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.


Asunto(s)
Bebidas Alcohólicas/microbiología , Fermentación , Microbiota , Bacterias/genética , Biodiversidad , China , Tecnología de Alimentos/métodos , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética
18.
Front Microbiol ; 8: 1747, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955318

RESUMEN

Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

19.
Aquat Toxicol ; 190: 87-93, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28697459

RESUMEN

Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co2+ and Ni2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co2+ and Ni2+ (≤0.5mgL-1) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL-1), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co2+ and Ni2+. In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co2+ and Ni2+ contents (2012.9±18.8 and 1997.7±29.2mgkg-1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co2+- and Ni2+-polluted water and high-quality biomass production.


Asunto(s)
Antioxidantes/metabolismo , Araceae/crecimiento & desarrollo , Cobalto/análisis , Níquel/análisis , Fotosíntesis/efectos de los fármacos , Almidón/metabolismo , Contaminantes Químicos del Agua/análisis , Araceae/efectos de los fármacos , Araceae/metabolismo , Biodegradación Ambiental , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Clorofila/metabolismo , Cobalto/metabolismo , Cobalto/farmacología , Níquel/metabolismo , Níquel/farmacología , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/farmacología , alfa-Amilasas/metabolismo
20.
PeerJ ; 5: e4186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302399

RESUMEN

BACKGROUND: Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. METHODS: DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. RESULTS: Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. DISCUSSION: This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA