Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Imaging ; 19(1): 39, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217036

RESUMEN

BACKGROUND: Preoperative chemotherapy is becoming standard therapy for liver metastasis from colorectal cancer, so early assessment of treatment response is crucial to make a reasonable therapeutic regimen and avoid overtreatment, especially for patients with severe side effects. The role of three non-mono-exponential diffusion models, such as the kurtosis model, the stretched exponential model and the statistical model, were explored in this study to early assess the response to chemotherapy in patients with liver metastasis from colorectal cancer. METHODS: Thirty-three patients diagnosed as colorectal liver metastasis were evaluated in this study. Diffusion-weighted images with b values (0, 200, 500, 1000, 1500, 2000 s/mm2) were acquired at 3.0 T. The parameters (ADCk, K, DDC,α, Ds and σ) were derived from three non-mono-exponential models (the kurtosis, stretched exponential and statistical models) as well as their corresponding percentage changes before and after chemotherapy. The difference in above parameters between the response and non-response groups were analyzed with independent-samples T-test (normality) and Mann-Whitney U-test (non-normality). Meanwhile, receiver operating characteristic curve (ROC) analyses were performed to assess the response to chemotherapy. RESULTS: Significantly lower values of K (the kurtosis coefficient derived from the kurtosis model) and σ (the width of diffusion coefficient distribution in the statistical model) (P < 0.05) were observed in the respond group before treatment, as well as higher ΔK and Δσ values (P < 0.05) after the first cycle of chemotherapy were also found compared with the non-respond group. ROC analyses showed the K value acquired before treatment had the highest diagnostic performance (0.746) in distinguishing responders from non-responders. Furthermore, the high sensitivity (100%) and accuracy (76.3%) from the K value before treatment was found in assessing the response of colorectal liver metastasis to chemotherapy. CONCLUSIONS: The non-mono-exponential diffusion models may be able to predict early response to chemotherapy in patients with colorectal liver metastasis.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Anciano , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Análisis de Supervivencia
2.
Transl Oncol ; 11(6): 1370-1378, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30216762

RESUMEN

PURPOSE: To distinguish hepatocellular carcinoma (HCC) from other types of hepatic lesions with the adaptive multi-exponential IVIM model. METHODS: 94 hepatic focal lesions, including 38 HCC, 16 metastasis, 12 focal nodular hyperplasia, 13 cholangiocarcinoma, and 15 hemangioma, were examined in this study. Diffusion-weighted images were acquired with 13 b values (b = 0, 3, …, 500 s/mm2) to measure the adaptive multi-exponential IVIM parameters, namely, pure diffusion coefficient (D), diffusion fraction (fd), pseudo-diffusion coefficient (Di*) and perfusion-related diffusion fraction (fi) of the ith perfusion component. Comparison of the parameters of and their diagnostic performance was determined using Mann-Whitney U test, independent-sample t test, one-way analysis of variance, Z test and receiver-operating characteristic analysis. RESULTS: D, D1* and D2* presented significantly difference between HCCs and other hepatic lesions, whereas fd, f1 and f2 did not show statistical differences. In the differential diagnosis of HCCs from other hepatic lesions, D2* (AUC, 0.927) provided best diagnostic performance among all parameters. Additionally, the number of exponential terms in the model was also an important indicator for distinguishing HCCs from other hepatic lesions. In the benign and malignant analysis, D gave the greatest AUC values, 0.895 or 0.853, for differentiation between malignant and benign lesions with three or two exponential terms. Most parameters were not significantly different between hypovascular and hypervascular lesions. For multiple comparisons, significant differences of D, D1* or D2* were found between certain lesion types. CONCLUSION: The adaptive multi-exponential IVIM model was useful and reliable to distinguish HCC from other hepatic lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...