Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell Death Differ ; 31(4): 431-446, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418695

RESUMEN

Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3ß, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.


Asunto(s)
Carcinoma Hepatocelular , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Ferroptosis , Neoplasias Hepáticas , Humanos , Ferroptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Ratones Desnudos , Peroxidación de Lípido/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores
4.
Front Oncol ; 13: 1257404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588092

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.993243.].

7.
Plant Physiol Biochem ; 202: 107928, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37582305

RESUMEN

CsCHYR1 (CHY ZINC-FINGER AND RING PROTEIN1) encodes a RING (Really Interesting New Gene) finger E3 ubiquitin ligase involved in ubiquitin-mediated protein degradation and plays an important role for cucumber to resist drought stress. Here, we obtain one of the candidate proteins CsCHYR1 that probably interacts with CsATAF1 by yeast-two hybrid screening. Subsequently, it is verified that CsCHYR1 interacts with CsATAF1 and has self-ubiquitination activity. When the cysteine residue at 180 in the RING domain of CsCHYR1 is replaced by serine or alanine, ubiquitin could not be transported from E2 to the substrate. CsCHYR1 ubiquitinates CsATAF1 and affects the stability of CsATAF1 when plants are subjected to drought stress. The expression level of CsCHYR1 is increased by 4-fold after ABA treatment at 9 h. The Atchyr1 mutants perform an ABA-hyposensitive phenotype and have a lower survival rate than Col-0 and CsCHYR1 Atchyr1 lines. In addition, CsCHYR1 interacts with CsSnRK2.6. Therefore, our study reveals a CsSnRK2.6-CsCHYR1-CsATAF1 complex to promote the drought stress response by decreasing CsATAF1 protein accumulation and inducing stomatal closure. Those findings provide new ideas for cucumber germplasm innovation from the perspective of biochemistry and molecular biology.


Asunto(s)
Arabidopsis , Cucumis sativus , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Arabidopsis/genética , Ubiquitina/metabolismo , Sequías , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
8.
Immunology ; 170(3): 388-400, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37501391

RESUMEN

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Asunto(s)
Neoplasias , Humanos , Transducción de Señal , ADN , Linfocitos T/metabolismo , Nucleotidiltransferasas/genética , Quimiocinas , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo
9.
EMBO Rep ; 24(8): e56437, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306047

RESUMEN

Homologous recombination (HR), a form of error-free DNA double-strand break (DSB) repair, is important for the maintenance of genomic integrity. Here, we identify a moonlighting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a regulator of HR repair, which is mediated through HDAC1-dependent regulation of RAD51 stability. Mechanistically, in response to DSBs, Src signaling is activated and mediates GAPDH nuclear translocation. Then, GAPDH directly binds with HDAC1, releasing it from its suppressor. Subsequently, activated HDAC1 deacetylates RAD51 and prevents it from undergoing proteasomal degradation. GAPDH knockdown decreases RAD51 protein levels and inhibits HR, which is re-established by overexpression of HDAC1 but not SIRT1. Notably, K40 is an important acetylation site of RAD51, which facilitates stability maintenance. Collectively, our findings provide new insights into the importance of GAPDH in HR repair, in addition to its glycolytic activity, and they show that GAPDH stabilizes RAD51 by interacting with HDAC1 and promoting HDAC1 deacetylation of RAD51.


Asunto(s)
Reparación del ADN , Reparación del ADN por Recombinación , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
10.
Cell Mol Life Sci ; 80(6): 159, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209177

RESUMEN

Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet ß cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened ß cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.


Asunto(s)
ADN Glicosilasas , Diabetes Mellitus Tipo 2 , Sinaptotagminas , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Secreción de Insulina , Hierro , Ratones Noqueados , Estrés Oxidativo
11.
Clin Transl Oncol ; 25(10): 2972-2982, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37079211

RESUMEN

OBJECTIVE: Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. METHODS: To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. RESULTS: The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. CONCLUSION: In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Vacunas , Ratones , Animales , Linfocitos T , Agotamiento de Células T , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos
12.
ACS Appl Mater Interfaces ; 15(10): 13772-13782, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877214

RESUMEN

Understanding the mechanisms leading to the degradation of alloys in molten salts at elevated temperatures is significant for developing several key energy generation and storage technologies, including concentrated solar and next-generation nuclear power plants. Specifically, the fundamental mechanisms of different types of corrosion leading to various morphological evolution characteristics for changing reaction conditions between the molten salt and alloy remain unclear. In this work, the three-dimensional (3D) morphological evolution of Ni-20Cr in KCl-MgCl2 is studied at 600 °C by combining in situ synchrotron X-ray and electron microscopy techniques. By further comparing different morphology evolution characteristics in the temperature range of 500-800 °C, the relative rates between diffusion and reaction at the salt-metal interface lead to different morphological evolution pathways, including intergranular corrosion and percolation dealloying. In this work, the temperature-dependent mechanisms of the interactions between metals and molten salts are discussed, providing insights for predicting molten salt corrosion in real-world applications.

13.
Appl Geogr ; 154: 102923, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36915293

RESUMEN

The COVID-19 pandemic and subsequent lockdowns have created immeasurable health and economic crises, leading to unprecedented disruptions to world trade. The COVID-19 pandemic shows diverse impacts on different economies that suffer and recover at different rates and degrees. This research aims to evaluate the spatio-temporal heterogeneity of international trade network vulnerabilities in the current crisis to understand the global production resilience and prepare for the future crisis. We applied a series of complex network analysis approaches to the monthly international trade networks at the world, regional, and country scales for the pre- and post- COVID-19 outbreak period. The spatio-temporal patterns indicate that countries and regions with an effective COVID-19 containment such as East Asia show the strongest resilience, especially Mainland China, followed by high-income countries with fast vaccine roll-out (e.g., U.S.), whereas low-income countries (e.g., Africa) show high vulnerability. Our results encourage a comprehensive strategy to enhance international trade resilience when facing future pandemic threats including effective non-pharmaceutical measures, timely development and rollout of vaccines, strong governance capacity, robust healthcare systems, and equality via international cooperation. The overall findings elicit the hidden global trading disruption, recovery, and growth due to the adverse impact of the COVID-19 pandemic.

14.
Immunology ; 169(4): 400-411, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36942414

RESUMEN

Tumour immunotherapy has achieved good therapeutic effects in clinical practice and has received increased attention. Cytotoxic T cells undoubtedly play an important role in tumour immunotherapy. As a revolutionary tumour immunotherapy approach, chimeric antigen receptor T-cell (CAR-T-cell) therapy has made breakthroughs in the treatment of haematological cancers. However, T cells are easily exhausted in vivo, especially after they enter solid tumours. The exhaustion of T cells can lead to poor results of CAR-T-cell therapy in the treatment of solid tumours. Here, we review the reasons for T-cell exhaustion and how T-cell exhaustion develops. We also review and discuss ways to improve CAR-T-cell therapy effects by regulating T-cell exhaustion.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Agotamiento de Células T , Inmunoterapia Adoptiva/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Receptores de Antígenos de Linfocitos T/genética
15.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36829835

RESUMEN

Reactive oxygen species (ROS) are a group of highly oxidative molecules that induce DNA damage, affecting DNA damage response (DDR) and gene expression. It is now recognized that DNA base excision repair (BER) is one of the important pathways responsible for sensing oxidative stress to eliminate DNA damage, in which FEN1 plays an important role in this process. However, the regulation of FEN1 under oxidative stress is still unclear. Here, we identified a novel RNA G-quadruplex (rG4) sequence in the 5'untranslated region (5'UTR) of FEN1 mRNA. Under oxidative stress, the G bases in the G4-forming sequence can be oxidized by ROS, resulting in structural disruption of the G-quadruplex. ROS or TMPyP4, a G4-structural ligand, disrupted the formation of G4 structure and affected the expression of FEN1. Furthermore, pull-down experiments identified a novel FEN1 rG4-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), and cellular studies have shown that hnRNPA1 plays an important role in regulating FEN1 expression. This work demonstrates that rG4 acts as a ROS sensor in the 5'UTR of FEN1 mRNA. Taken together, these results suggest a novel role for rG4 in translational control under oxidative stress.

16.
Front Oncol ; 12: 993243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439421

RESUMEN

The expression of O-GlcNAc transferase (OGT) and its catalytic product, O-GlcNAcylation (O-GlcNAc), are elevated in many types of cancers, including prostate cancer (PC). Inhibition of OGT serves as a potential strategy for PC treatment alone or combinational therapy. PC is the second common cancer type in male worldwide, for which chemotherapy is still the first-line treatment. However, the function of inhibition of OGT on chemotherapeutic response in PC cells is still unknown. In this study, we show that inhibition of OGT by genetic knockdown using shRNA or by chemical inhibition using OGT inhibitors sensitize PC cells to docetaxel, which is the most common chemotherapeutic agent in PC chemotherapy. Furthermore, we identified that microRNA-140 (miR-140) directly binds to OGT mRNA 3' untranslated region and inhibits OGT expression. Moreover, docetaxel treatment stimulates miR-140 expression, whereas represses OGT expression in PC cells. Overexpression of miR-140 enhanced the drug sensitivity of PC cells to docetaxel, which could be reversed by overexpression of OGT. Overall, this study demonstrates miR-140/OGT axis as therapeutic target in PC treatment and provides a promising adjuvant therapeutic strategy for PC therapy.

17.
Cell Death Dis ; 13(7): 583, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794098

RESUMEN

Rheumatoid arthritis (RA) is a chronic and inflammatory autoimmune disease. Macrophage pyroptosis, a proinflammatory form of cell death, is critically important in RA; however, the detailed mechanism underlying pyroptosis induction is not yet well understood. Here, we report that DNA polymerase ß (Pol ß), a key enzyme in base excision repair, plays a pivotal role in RA pathogenesis. Our data shows that Pol ß expression is significantly decreased in peripheral blood mononuclear cells (PBMCs) from active RA patients and collagen-induced arthritis (CIA) mice, and Pol ß deficiency increases the incidence of RA, macrophage infiltration, and bone destruction in CIA mouse models. In vitro, experiments showed that Pol ß deficiency exacerbated macrophage pyroptosis induced by LPS plus ATP, while overexpression of Pol ß inhibited macrophage pyroptosis. Further characterization revealed that Pol ß knockout resulted in DNA damage accumulation and cytosolic dsDNA leakage, which activated the cGAS-STING-NF-κB signaling pathway and upregulated the expression of NLRP3, IL-1 ß, and IL-18. In conclusion, our findings clarify the influence of Pol ß on the development of RA and provide a detailed explanation for the STING-NF-κB pathway to induce macrophage pyroptosis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Artritis Experimental/genética , Artritis Reumatoide/genética , Leucocitos Mononucleares , Macrófagos , Ratones , FN-kappa B , Nucleotidiltransferasas , Piroptosis
18.
Elife ; 112022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35502895

RESUMEN

Methyltransferase-like 3 (METTL3) and N6-methyladenosine (m6A) are involved in many types of biological and pathological processes, including DNA repair. However, the function and mechanism of METTL3 in DNA repair and chemotherapeutic response remain largely unknown. In present study, we identified that METTL3 participates in the regulation of homologous recombination repair (HR), which further influences chemotherapeutic response in both MCF-7 and MDA-MB-231 breast cancer (BC) cells. Knockdown of METTL3 sensitized these BC cells to Adriamycin (ADR; also named as doxorubicin) treatment and increased accumulation of DNA damage. Mechanically, we demonstrated that inhibition of METTL3 impaired HR efficiency and increased ADR-induced DNA damage by regulating m6A modification of EGF/RAD51 axis. METTL3 promoted EGF expression through m6A modification, which further upregulated RAD51 expression, resulting in enhanced HR activity. We further demonstrated that the m6A 'reader,' YTHDC1, bound to the m6A modified EGF transcript and promoted EGF synthesis, which enhanced HR and cell survival during ADR treatment in BC. Our findings reveal a pivotal mechanism of METTL3-mediated HR and chemotherapeutic drug response, which may contribute to cancer therapy.


Asunto(s)
Neoplasias de la Mama , Factor de Crecimiento Epidérmico , Metiltransferasas , Recombinasa Rad51 , Reparación del ADN por Recombinación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
19.
J Clin Lab Anal ; 36(7): e24501, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576501

RESUMEN

BACKGROUND: Previous evidence has shown that apoptosis performs integral functions in the tumorigenesis and development of various tumors. Therefore, this study aimed to establish a molecular subtype and prognostic signature based on apoptosis-related genes (ARGs) to understand the molecular mechanisms and predict prognosis in patients with osteosarcoma. METHODS: The GEO and TARGET databases were utilized to obtain the expression levels of ARGs and clinical information of osteosarcoma patients. Consensus clustering analysis was used to explore the different molecular subtypes based on ARGs. GO, KEGG, GSEA, ESTIMATE, and ssGSEA analyses were performed to examine the differences in biological functions and immune characteristics between the distinct molecular subtypes. Then, we constructed an ARG signature by LASSO analysis. The prognostic significance of the ARG signature in osteosarcoma was determined by Kaplan-Meier plotter, Cox regression, and nomogram analyses. RESULTS: Two apoptosis-related subtypes were identified. Cluster 1 had a better prognosis, higher immunogenicity, and immune cell infiltration, as well as a better response to immunotherapy than Cluster 2. We discovered that patients in the high-risk cohort had a lower survival rate than those in the low-risk cohort according to the ARG signature. Furthermore, Cox regression analysis confirmed that a high risk score independently acted as an unfavorable prognostic marker. Additionally, the nomogram combining risk scores with clinical characteristics can improve prediction efficiency. CONCLUSION: We demonstrated that patients suffering from osteosarcoma may be classified into two apoptosis-related subtypes. Moreover, we developed an ARG prognostic signature to predict the prognosis status of osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Apoptosis/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Osteosarcoma/genética , Pronóstico
20.
J Synchrotron Radiat ; 29(Pt 1): 67-79, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985424

RESUMEN

Soft X-ray spectromicroscopy at the O K-edge, U N4,5-edges and Ce M4,5-edges has been performed on focused ion beam sections of spent nuclear fuel for the first time, yielding chemical information on the sub-micrometer scale. To analyze these data, a modification to non-negative matrix factorization (NMF) was developed, in which the data are no longer required to be non-negative, but the non-negativity of the spectral components and fit coefficients is largely preserved. The modified NMF method was utilized at the O K-edge to distinguish between two components, one present in the bulk of the sample similar to UO2 and one present at the interface of the sample which is a hyperstoichiometric UO2+x species. The species maps are consistent with a model of a thin layer of UO2+x over the entire sample, which is likely explained by oxidation after focused ion beam (FIB) sectioning. In addition to the uranium oxide bulk of the sample, Ce measurements were also performed to investigate the oxidation state of that fission product, which is the subject of considerable interest. Analysis of the Ce spectra shows that Ce is in a predominantly trivalent state, with a possible contribution from tetravalent Ce. Atom probe analysis was performed to provide confirmation of the presence and localization of Ce in the spent fuel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA