RESUMEN
Integrins, a family of cell adhesion transmembrane receptors, mediate cell adhesion, migration, proliferation, apoptosis, and phagocytosis. In the present study, an integrin ChIntα 4 from Crassostrea hongkongensis was characterized to investigate its role in defensing against pathogenic bacterium Vibrio alginolyticus. The full-length cDNA sequence of ChIntα 4 was 3572 bp with an open reading frame (ORF) of 3168 bp, which encoded a polypeptide with 1055 amino acids. The mRNA expression of ChIntα 4 in the hemocytes was significantly up-regulated at 6 h and 24 h post V. alginolyticus stimulation (p < 0.01). The recombinant ChIntα 4 protein could agglutinate the rabbit red blood cells and Gram-negative bacteria V. alginolyticus and Escherichia coli. Moreover, the phagocytic activity of the hemocytes was significantly down-regulated from 46.9% to 32.7% when blocked with anti-ChIntα 4 antibody, and it was significantly up-regulated from 42.7% to 59.5% post transfection with pCI-neo-ChIntα 4 plasmid (p < 0.05). In conclusion, these findings demonstrated that ChIntα 4 might be involved in resisting V. alginolyticus infection and regulating phagocytosis as a cell adhesion receptor in C. hongkongensis.
Asunto(s)
Crassostrea , Hemocitos , Animales , Crassostrea/metabolismo , Inmunidad Innata , Integrinas/genética , Integrinas/metabolismo , Fagocitosis , Filogenia , Conejos , Vibrio alginolyticusRESUMEN
Biological control is considered as a promising alternative to pesticide and plant resistance to manage plant diseases, but a better understanding of the interaction of its natural and societal functions is necessary for its endorsement. The introduction of biological control agents (BCAs) alters the interaction among plants, pathogens, and environments, leading to biological and physical cascades that influence pathogen fitness, plant health, and ecological function. These interrelationships generate a landscape of tradeoffs among natural and social functions of biological control, and a comprehensive evaluation of its benefits and costs across social and farmer perspectives is required to ensure the sustainable development and deployment of the approach. Consequently, there should be a shift of disease control philosophy from a single concept that only concerns crop productivity to a multifaceted concept concerning crop productivity, ecological function, social acceptability, and economical accessibility. To achieve these goals, attempts should make to develop "green" BCAs used dynamically and synthetically with other disease control approaches in an integrated disease management scheme, and evolutionary biologists should play an increasing role in formulating the strategies. Governments and the public should also play a role in the development and implementation of biological control strategies supporting positive externality.
RESUMEN
The orange-spotted grouper (Epinephelus coioides) is an important marine farmed fish in China. It is affected by the bacterial pathogen Vibrio alginolyticus, which causes high mortality and substantial economic losses. We studied the transcriptional changes of the IgZ gene in E. coioides following V. alginolyticus stimulation and investigated the distribution of IgZ in different tissues. The highest expression level of IgZ occurred in the head kidney. When fish were stimulated with live and inactivated V. alginolyticus, the expression levels of IgZ in the head kidney, spleen, intestine, gills and blood cells were significantly upregulated. In an in situ hybridization study, IgZ mRNA-positive cells were detected in the head kidney, spleen and gill, but positive signals were not detected in the liver and intestine. IgZ-labelled cells increased in the head kidney, spleen and gills post-infection with V. alginolyticus for 21 days. The present study provides additional evidence that IgZ is involved in mucosal immune responses and helps explain the role of IgZ in E. coioides defence against V. alginolyticus infection.
Asunto(s)
Lubina , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria , Vacunación/veterinaria , Vibriosis/veterinaria , Vibrio alginolyticus/fisiología , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Distribución Aleatoria , Vibriosis/inmunología , Vibriosis/microbiologíaRESUMEN
Temperature plays a multidimensional role in host-pathogen interactions. As an important element of climate change, elevated world temperature resulting from global warming presents new challenges to sustainable disease management. Knowledge of pathogen adaptation to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates originating from seven thermal environments were acclimated for 200 days under stepwise increase or decrease of experimental temperatures and evolutionary responses of the isolates to the thermal changes were evaluated. We found temperature acclimation significantly increased the fitness and genetic adaptation of P. infestans isolates at both low and high temperatures. Low-temperature acclimation enforced the countergradient adaptation of the pathogen to its past selection and enhanced the positive association between the pathogen's intrinsic growth rate and aggressiveness. At high temperatures, we found that pathogen growth collapsed near the maximum temperature for growth, suggesting a thermal niche boundary may exist in the evolutionary adaptation of P. infestans. These results indicate that pathogens can quickly adapt to temperature shifts in global warming. If this is associated with environmental conditions favoring pathogen spread, it will threaten future food security and human health and require the establishment of mitigating actions.
RESUMEN
BACKGROUND: Cross-resistance, a phenomenon that a pathogen resists to one antimicrobial compound also resists to one or several other compounds, is one of major threats to human health and sustainable food production. It usually occurs among antimicrobial compounds sharing the mode of action. In this study, we determined the sensitivity profiles of Alternaria alternata, a fungal pathogen which can cause diseases in many crops to two fungicides (mancozeb and difenoconazole) with different mode of action using a large number of isolates (234) collected from seven potato fields across China. RESULTS: We found that pathogens could also develop cross resistance to fungicides with different modes of action as indicated by a strong positive correlation between mancozeb and difenoconazole tolerances to A. alternata. We also found a positive association between mancozeb tolerance and aggressiveness of A. alternata, suggesting no fitness penalty of developing mancozeb resistance in the pathogen and hypothesize that mechanisms such as antimicrobial compound efflux and detoxification that limit intercellular accumulation of natural/synthetic chemicals in pathogens might account for the cross-resistance and the positive association between pathogen aggressiveness and mancozeb tolerance. CONCLUSIONS: The detection of cross-resistance among different classes of fungicides suggests that the mode of action alone may not be an adequate sole criterion to determine what components to use in the mixture and/or rotation of fungicides in agricultural and medical sects. Similarly, the observation of a positive association between the pathogen's aggressiveness and tolerance to mancozeb suggests that intensive application of site non-specific fungicides might simultaneously lead to reduced fungicide resistance and enhanced ability to cause diseases in pathogen populations, thereby posing a greater threat to agricultural production and human health. In this case, the use of evolutionary principles in closely monitoring populations and the use of appropriate fungicide applications are important for effective use of the fungicides and durable infectious disease management.
Asunto(s)
Alternaria/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , Alternaria/genética , Alternaria/aislamiento & purificación , Alternaria/fisiología , China , Dioxolanos/farmacología , Maneb/farmacología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Triazoles/farmacología , Zineb/farmacologíaRESUMEN
Evolution of fungicide resistance in plant pathogens is one of major concerns in sustainable plant disease management. In this study, the genetics and potential of developing resistance to a demethylation inhibitor (DMI) fungicide, difenoconazole, in the fungal pathogen Alternaria alternata was investigated using a comparative analysis of genetic variation in molecular (Single Sequence Repeats, SSR) and phenotypic (fungicide tolerance) markers. No difenoconazole resistance was found in the 215 A. alternata isolates sampled from seven different ecological zones in China despite the widespread use of the fungicide for more than 20 years. This result suggests that the risk of developing resistance to difenoconazole in A. alternata is low and we hypothesize that the low risk is likely caused by fitness penalties incurred by resistant mutants and the multiple mechanisms involving in developing resistance. Heritability and plasticity account for â¼24 and 3% of phenotypic variation, respectively, indicating that genetic adaptation by sequence variation plays a more important role in the evolution of difenoconazole resistance than physiological adaptation by altering gene expression. Constraining selection in the evolution of A. alternata resistance to difenoconazole was documented by different patterns of population differentiation and isolate-by-distance between SSR markers and difenoconazole tolerance. Though the risk of developing resistance is low, the findings of significant differences in difenoconazole tolerance among isolates and populations, and a skewing distribution toward higher tolerance suggests that a stepwise accumulation of tolerance to the fungicide might be occurring in the pathogen populations. As a consequence, dynamic management programs guided by evolutionary principles such as spatiotemporal rotations of fungicides with different modes of action are critical to prevent the continued accumulation of tolerance or the evolution of resistance to difenoconazole and other DMI fungicides.
RESUMEN
The spread of antimicrobial resistance and global change in air temperature represent two major phenomena that are exerting a disastrous impact on natural and social issues but investigation of the interaction between these phenomena in an evolutionary context is limited. In this study, a statistical genetic approach was used to investigate the evolution of antimicrobial resistance in agricultural ecosystem and its association with local air temperature, precipitation, and UV radiation. We found no resistance to mancozeb, a nonspecific fungicide widely used in agriculture for more than half a century, in 215 Alternaria alternata isolates sampled from geographic locations along a climatic gradient and cropping system representing diverse ecotypes in China, consistent with low resistance risk in many nonspecific fungicides. Genetic variance accounts for ~35% of phenotypic variation, while genotype-environment interaction is negligible, suggesting that heritability plays a more important role in the evolution of resistance to mancozeb in plant pathogens than phenotypic plasticity. We also found that tolerance to mancozeb in agricultural ecosystem is under constraining selection and significantly associated with local air temperature, possibly resulting from a pleiotropic effect of resistance with thermal and other ecological adaptations. The implication of these results for fungicide and other antimicrobial management in the context of global warming is discussed.
RESUMEN
Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.
Asunto(s)
Fungicidas Industriales/farmacología , Metacrilatos/farmacología , Repeticiones de Microsatélite/genética , Phytophthora infestans/efectos de los fármacos , Pirimidinas/farmacología , China , Resistencia a Medicamentos/efectos de los fármacos , Variación Genética , Phytophthora infestans/genética , Phytophthora infestans/crecimiento & desarrollo , Hojas de la Planta/parasitología , Solanum tuberosum/parasitología , Estrobilurinas , TemperaturaRESUMEN
Reproductive mode can impact population genetic dynamics and evolutionary landscape of plant pathogens as well as on disease epidemiology and management. In this study, we monitored the spatial dynamics and mating type idiomorphs in ~700 Alternaria alternata isolates sampled from the main potato production areas in China to infer the mating system of potato early blight. Consistent with the expectation of asexual species, identical genotypes were recovered from different locations separated by hundreds of kilometers of geographic distance and spanned across many years. However, high genotype diversity, equal MAT1-1 and MAT1-2 frequencies within and among populations, no genetic differentiation and phylogenetic association between two mating types, combined with random association amongst neutral markers in some field populations, suggested that sexual reproduction may also play an important role in the epidemics and evolution of the pathogen in at least half of the populations assayed despite the fact that no teleomorphs have been observed yet naturally or artificially. Our results indicated that A. alternata may adopt an epidemic mode of reproduction by combining many cycles of asexual propagation with fewer cycles of sexual reproduction, facilitating its adaptation to changing environments and making the disease management on potato fields even more difficult.