Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1399274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894746

RESUMEN

Gonadotropin-releasing hormone (GnRH) is a key stimulator for gonadotropin secretion in the pituitary and its pivotal role in reproduction is well conserved in vertebrates. In fish models, GnRH can also induce prolactin (PRL) release, but little is known for the corresponding effect on PRL gene expression as well as the post-receptor signalling involved. Using grass carp as a model, the functional role of GnRH and its underlying signal transduction for PRL regulation were examined at the pituitary level. Using laser capture microdissection coupled with RT-PCR, GnRH receptor expression could be located in carp lactotrophs. In primary cell culture prepared from grass carp pituitaries, the native forms of GnRH, GnRH2 and GnRH3, as well as the GnRH agonist [D-Arg6, Pro9, NEt]-sGnRH were all effective in elevating PRL secretion, PRL mRNA level, PRL cell content and total production. In pituitary cells prepared from the rostral pars distalis, the region in the carp pituitary enriched with lactotrophs, GnRH not only increased cAMP synthesis with parallel CREB phosphorylation and nuclear translocation but also induced a rapid rise in cytosolic Ca2+ by Ca2+ influx via L-type voltage-sensitive Ca2+ channel (VSCC) with subsequent CaM expression and NFAT2 dephosphorylation. In carp pituitary cells prepared from whole pituitaries, GnRH-induced PRL secretion was reduced/negated by inhibiting cAMP/PKA, PLC/PKC and Ca2+/CaM/CaMK-II pathways but not the signalling events via IP3 and CaN/NFAT. The corresponding effect on PRL mRNA expression, however, was blocked by inhibiting cAMP/PKA/CREB/CBP and Ca2+/CaM/CaN/NFAT2 signalling but not PLC/IP3/PKC pathway. At the pituitary cell level, activation of cAMP/PKA pathway could also induce CaM expression and Ca2+ influx via VSCC with parallel rises in PRL release and gene expression in a Ca2+/CaM-dependent manner. These findings, as a whole, suggest that the cAMP/PKA-, PLC/PKC- and Ca2+/CaM-dependent cascades are differentially involved in GnRH-induced PRL secretion and PRL transcript expression in carp lactotrophs. During the process, a functional crosstalk between the cAMP/PKA- and Ca2+/CaM-dependent pathways may occur with PRL release linked with CaMK-II and PKC activation and PRL gene transcription caused by nuclear action of CREB/CBP and CaN/NFAT2 signalling.


Asunto(s)
Calcio , Carpas , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Hormona Liberadora de Gonadotropina , Hipófisis , Prolactina , Proteína Quinasa C , Fosfolipasas de Tipo C , Animales , Carpas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Prolactina/metabolismo , Hipófisis/metabolismo , Hipófisis/citología , Proteína Quinasa C/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Calcio/metabolismo , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/genética , AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Calmodulina/metabolismo , Células Cultivadas , Expresión Génica/efectos de los fármacos
2.
J Pharm Biomed Anal ; 248: 116313, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878453

RESUMEN

Hypericum perforatum L. (HPL), also known as St. John's wort, is one of the extensively researched domestically and internationally as a medicinal plant. In this study, non-targeted metabolomics combined with machine learning methods were used to identify reasonable quality indicators for the holistic quality control of HPL. First, the high-resolution MS data from different samples of HPL were collected, and visualized the chemical compounds through the MS molecular network. A total of 122 compounds were identified. Then, the orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established for comparing the differences in metabolite expression between flower, leaf, and branches. A total of 46 differential metabolites were screened out. Subsequently, analyzing the pharmacological activities of these differential metabolites based on protein-protein interaction (PPI) network. A total of 25 compounds associated with 473 gene targets were retrieved. Among them, 13 highly active compounds were selected as potential quality markers, and five compounds were ultimately selected as quality control markers for HPL. Finally, three different classifiers (support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN)) were used to validate whether the selected quality control markers are qualified. When the feature count is set to 122 and 46, the RF model demonstrates optimal performance. As the number of variables decreases, the performance of the RF model degrades. The KNN model and the SVM model also exhibit a decrease in performance but still manage to satisfy the intended requirements. The strategy can be applied to the quality control of HPL and can provide a reference for the quality control of other herbal medicines.

3.
J Chromatogr A ; 1725: 464931, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703457

RESUMEN

Atractylodis rhizoma is a common bulk medicinal material with multiple species. Although different varieties of atractylodis rhizoma exhibit variations in their chemical constituents and pharmacological activities, they have not been adequately distinguished due to their similar morphological features. Hence, the purpose of this research is to analyze and characterize the volatile organic compounds (VOCs) in samples of atractylodis rhizoma using multiple techniques and to identify the key differential VOCs among different varieties of atractylodis rhizoma for effective discrimination. The identification of VOCs was carried out using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), resulting in the identification of 60 and 53 VOCs, respectively. The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to screen potential biomarkers and based on the variable importance in projection (VIP ≥ 1.2), 24 VOCs were identified as critical differential compounds. Random forest (RF), K-nearest neighbor (KNN) and back propagation neural network based on genetic algorithm (GA-BPNN) models based on potential volatile markers realized the greater than 90 % discriminant accuracies, which indicates that the obtained key differential VOCs are reliable. At the same time, the aroma characteristics of atractylodis rhizoma were also analyzed by ultra-fast gas chromatography electronic nose (Ultra-fast GC E-nose). This study indicated that the integration of HS-SPME-GC-MS, HS-GC-IMS and ultra-fast GC E-nose with chemometrics can comprehensively reflect the differences of VOCs in atractylodis rhizoma samples from different varieties, which will be a prospective tool for variety discrimination of atractylodis rhizoma.


Asunto(s)
Atractylodes , Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Atractylodes/química , Espectrometría de Movilidad Iónica/métodos , Rizoma/química , Análisis Discriminante
4.
J Agric Food Chem ; 72(14): 7707-7715, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530236

RESUMEN

In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and ß-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and ß-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and ß-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Sesquiterpenos de Eudesmano , Atractylodes/química , Medicamentos Herbarios Chinos/química , Espectroscopía Infrarroja Corta/métodos , Quimiometría , Análisis de los Mínimos Cuadrados
5.
Front Endocrinol (Lausanne) ; 14: 1283298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027109

RESUMEN

Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species. As a first step, goldfish AdipoQ was cloned and found to be ubiquitously expressed at the tissue level. Using sequence alignment, protein modeling, phylogenetic analysis and comparative synteny, goldfish AdipoQ was shown to be evolutionarily related to its fish counterparts and structurally comparable with AdipoQ in higher vertebrates. In our study, recombinant goldfish AdipoQ was expressed in E. coli, purified by IMAC, and confirmed to be bioactive via activation of AdipoQ receptors expressed in HepG2 cells. Feeding in goldfish revealed that plasma levels of AdipoQ and its transcript expression in the liver and brain areas involved in appetite control including the telencephalon, optic tectum, and hypothalamus could be elevated by food intake. In parallel studies, IP and ICV injection of recombinant goldfish AdipoQ in goldfish was effective in reducing foraging behaviors and food consumption. Meanwhile, transcript expression of orexigenic factors (NPY, AgRP, orexin, and apelin) was suppressed with parallel rises in anorexigenic factors (POMC, CART, CCK, and MCH) in the telencephalon, optic tectum and/or hypothalamus. In these brain areas, transcript signals for leptin receptor were upregulated with concurrent drops in the NPY receptor and ghrelin receptors. In the experiment with IP injection of AdipoQ, transcript expression of leptin was also elevated with a parallel drop in ghrelin mRNA in the liver. These findings suggest that AdipoQ can act as a novel satiety factor in goldfish. In this case, AdipoQ signals (both central and peripheral) can be induced by feeding and act within the brain to inhibit feeding behaviors and food intake via differential regulation of orexigenic/anorexigenic factors and their receptors. The feeding inhibition observed may also involve the hepatic action of AdipoQ by modulation of feeding regulators expressed in the liver.


Asunto(s)
Ingestión de Alimentos , Carpa Dorada , Animales , Ingestión de Alimentos/fisiología , Carpa Dorada/genética , Adiponectina/metabolismo , Distribución Tisular , Escherichia coli/metabolismo , Filogenia , Clonación Molecular , Proteínas Recombinantes/metabolismo , Mamíferos/metabolismo
6.
BMC Pregnancy Childbirth ; 22(1): 819, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335302

RESUMEN

BACKGROUND: There is growing interest regarding vitamin D and its potential role in gestational diabetes mellitus (GDM). We aimed to assess maternal vitamin D status in early pregnancy and its relationships with the risk of GDM in a Chinese population in Shanghai. METHODS: The retrospective cohort study included a total of 7816 pregnant women who underwent a 75-g oral glucose tolerance test (OGTT) during 24-28 weeks of gestation. Participants' demographic information including maternal age, prepregnancy body mass index (BMI), gestational age, parity, season of blood collection, serum 25-hydroxy vitamin D [25(OH)D] data and other blood biomarker data at 6 to 14 weeks of gestation were retrospectivly extracted from the medical records in the hospital information system. RESULTS: In the cohort, the prevalence of GDM was 8.6% and the prevalence of vitamin D deficiency and insufficiency in early pregnancy was 53.1 and 38.5%, respectively. The mean value of the serum 25(OH)D concentration was 19.6±7.5 ng/mL. The restricted cubic splines model showed an inverted J-shaped relationship in which the risk of GDM decreased when the 25(OH)D concentrations were ≥ 20 ng/mL. Logistic model analysis showed that 25(OH)D concentrations ≥ 30 ng/mL significantly decreased the risk of GDM (odds ratio = 0.63, 95% confidence interval: 0.45-0.89; P = 0.010) compared with 25(OH)D concentrations < 20 ng/ml. CONCLUSIONS: In early pregnancy, vitamin D deficiency and insufficiency were very common, and a high level of vitamin D showed protective effects against the incidence risk of GDM.


Asunto(s)
Diabetes Gestacional , Deficiencia de Vitamina D , Femenino , Embarazo , Humanos , Estudios Retrospectivos , China/epidemiología , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Vitaminas , Estudios de Cohortes , Factores de Riesgo
7.
BMC Pregnancy Childbirth ; 22(1): 526, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764962

RESUMEN

BACKGROUND: To evaluate the differences in pregnancy outcomes between assisted reproductive technology (ART) patients and natural pregnant women in Shanghai, China in the past 6 years objectively. And to assess the feasibility of the research method of registry-database linkage in mainland China. METHODS: This retrospective study was conducted using registry-database linkage. A total of 8102 pregnancies with ART and 8096 parturients with spontaneous conception (SC) from 10 reproductive centers and 111 hospitals composed our retrospective study. The primary outcomes were the rates of obstetric complications (pregnancy-induced hypertention [PIH], gestational diabetes mellitus [GDM], placenta previa, mode of delivery, preterm birth [PTB], low birth weight [LBW], and macrosomia). The prenatal outcomes were compared between ART and SC parturients, frozen-thawed embryo transfer (FET) and fresh embryo transfer, and in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We calculated odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: The final matching rate of the target population was 92% by using registry linkage. ART resulted in a higher rate of multiple birth, PTB, LBW, cesarean section, placenta previa and GDM compared with SC in the singleton cohort. In ART patients, pregnant women with FET had a significantly higher risk of PIH than those with fresh embryo transfer (14.1% Vs 9.3%, AOR1.528, 95% CI 1.303-1.793), but there was no difference between IVF and ICSI. FET is also related to the severity of PIH. CONCLUSIONS: ART increased the rate of complications during pregnancy, the risk and severity of PIH in patients with FET was higher than that in patients with fresh embryo transfer. The registry-database linkage study is an objective and feasible research method in mainland China.


Asunto(s)
Diabetes Gestacional , Placenta Previa , Nacimiento Prematuro , Cesárea , China/epidemiología , Femenino , Humanos , Recién Nacido , Masculino , Placenta Previa/epidemiología , Embarazo , Resultado del Embarazo/epidemiología , Mujeres Embarazadas , Nacimiento Prematuro/epidemiología , Sistema de Registros , Estudios Retrospectivos , Semen
8.
Front Endocrinol (Lausanne) ; 12: 681646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276561

RESUMEN

Spexin (SPX), a highly conserved neuropeptide, is known to have diverse functions and has been implicated/associated with pathological conditions, including obesity, diabetes, anorexia nervosa, and anxiety/mood disorders. Although most of the studies on SPX involved the mouse model, the solution structure of mouse SPX, structural aspects for SPX binding with its receptors GalR2/3, and its cellular expression/distribution in mouse tissues are largely unknown. Using CD and NMR spectroscopies, the solution structure of mouse SPX was shown to be in the form of a helical peptide with a random coil from Asn1 to Pro4 in the N-terminal followed by an α-helix from Gln5 to Gln14 in the C-terminus. The molecular surface of mouse SPX is largely hydrophobic with Lys11 as the only charged residue in the α-helix. Based on the NMR structure obtained, docking models of SPX binding with mouse GalR2 and GalR3 were constructed by homology modeling and MD simulation. The models deduced reveal that the amino acids in SPX, especially Asn1, Leu8, and Leu10, could interact with specific residues in ECL1&2 and TMD2&7 of GalR2 and GalR3 by H-bonding/hydrophobic interactions, which provides the structural evidence to support the idea that the two receptors can act as the cognate receptors for SPX. For tissue distribution of SPX, RT-PCR based on 28 tissues/organs harvested from the mouse demonstrated that SPX was ubiquitously expressed at the tissue level with notable signals detected in the brain, GI tract, liver, gonad, and adrenal gland. Using immunohistochemical staining, protein signals of SPX could be located in the liver, pancreas, white adipose tissue, muscle, stomach, kidney, spleen, gonad, adrenal, and hypothalamo-pituitary axis in a cell type-specific manner. Our results, as a whole, not only can provide the structural information for ligand/receptor interaction for SPX but also establish the anatomical basis for our on-going studies to examine the physiological functions of SPX in the mouse model.


Asunto(s)
Hormonas Peptídicas/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Receptor de Galanina Tipo 3/metabolismo , Animales , Espectroscopía de Resonancia Magnética , Ratones , Simulación del Acoplamiento Molecular
9.
Front Endocrinol (Lausanne) ; 12: 681647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276562

RESUMEN

Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Hormonas Peptídicas/metabolismo , Saciedad/fisiología , Animales , Ratones , Receptores de Ghrelina/metabolismo , Regulación hacia Arriba
10.
Front Endocrinol (Lausanne) ; 12: 681648, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025589

RESUMEN

Spexin (SPX), a neuropeptide with diverse functions, is a novel satiety factor in fish models and its role in feeding control has been recently confirmed in mammals. In mouse, food intake was shown to trigger SPX expression in glandular stomach with parallel rise in serum SPX and these SPX signals could inhibit feeding via central actions within the hypothalamus. However, the mechanisms for SPX regulation by food intake are still unclear. To examine the role of insulin signal caused by glucose uptake in SPX regulation, the mice were IP injected with glucose and insulin, respectively. In this case, serum SPX was elevated by glucose but not altered by insulin. Meanwhile, SPX transcript expression in the glandular stomach was up-regulated by glucose but the opposite was true for insulin treatment. Using in situ hybridization, the differential effects on SPX gene expression were located in the gastric mucosa of glandular stomach. Co-injection experiments also revealed that glucose stimulation on serum SPX and SPX mRNA expressed in glandular stomach could be blocked by insulin. In gastric mucosal cells prepared from glandular stomach, the opposite effects on SPX transcript expression by glucose and insulin could still be noted with similar blockade of the stimulatory effects of glucose by insulin. In this cell model, SPX gene expression induced by glucose was mediated by glucose uptake via GLUT, ATP synthesis by glycolysis/respiratory chain, and subsequent modulation of KATP channel activity, but the voltage-sensitive Ca2+ channels were not involved. The corresponding inhibition by insulin, however, was mediated by PI3K/Akt, MEK1/2/ERK1/2, and P38MAPK cascades coupled to insulin receptor but not IGF-1 receptor. Apparently, glucose uptake in mice can induce SPX expression in the glandular stomach through ATP synthesis via glucose metabolism and subsequent modification of KATP channel activity, which may contribute to SPX release into circulation to act as the satiety signal after food intake. The insulin rise caused by glucose uptake, presumably originated from the pancreas, may serve as a negative feedback to inhibit the SPX response by activating MAPK and PI3K/Akt pathways in the stomach.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Hormonas Peptídicas/metabolismo , Estómago/metabolismo , Animales , Células Cultivadas , Ingestión de Alimentos , Expresión Génica , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hormonas Peptídicas/sangre , Hormonas Peptídicas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estómago/citología
11.
Neural Plast ; 2020: 8822579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908484

RESUMEN

Background: Increasing evidence has revealed that mesenchymal stromal cell (MSC) transplantation alleviates hypoxic-ischemic brain damage (HIBD) induced neurological impairments via immunomodulating astrocyte antiapoptosis effects. However, it remains unclear whether MSCs regulate neuron autophagy following HIBD. Results: In the present study, MSC transplantation effectively ameliorated learning-memory function and suppressed stress-induced hippocampal neuron autophagy in HIBD rats. Moreover, the suppressive effects of MSCs on autophagy were significantly weakened following endogenous IL-6 silencing in MSCs. Suppressing IL-6 expression also significantly increased p-AMPK protein expression and decreased p-mTOR protein expression in injured hippocampal neurons. Conclusion: Endogenous IL-6 in MSCs may reduce autophagy in hippocampal neurons partly through the AMPK/mTOR pathway.


Asunto(s)
Autofagia , Hipocampo/fisiopatología , Hipoxia-Isquemia Encefálica/fisiopatología , Interleucina-6/fisiología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Neuronas/fisiología , Estrés Fisiológico , Animales , Aprendizaje por Laberinto/fisiología , Cultivo Primario de Células , Ratas Sprague-Dawley
12.
Artículo en Inglés | MEDLINE | ID: mdl-32082258

RESUMEN

In mammals, local production of tumor necrosis factor α (TNFα) inhibits growth hormone (GH)-induced IGF-I expression at tissue level and contributes to GH resistance caused by sepsis/endotoxemia and inflammation. Although the loss of GH responsiveness can be mediated by a parallel rise in SOCS expression, the signaling mechanisms for TNFα-induced SOCS expression at the hepatic level have not been characterized and the comparative aspects of the phenomenon, especially in lower vertebrates, are still unknown. Recently, type II SOCS, including SOCS1-3 and CISH, have been cloned in grass carp and shown to act as the feedback repressors for GH signaling via JAK2/STAT5 pathway. To shed light on the mechanisms for TNFα-induced GH resistance in fish model, grass carp TNFα was cloned and confirmed to be a single-copy gene expressed in various tissues including the liver. In carp hepatocytes, incubation with the endotoxin LPS induced TNFα expression with parallel rises in SOCS1-3 and CISH mRNA levels. Similar to LPS, TNFα treatment could block GH-induced IGF-I/-II mRNA expression and elevate SOCS1, SOCS3, and CISH transcript levels. However, TNFα was not effective in altering SOCS2 expression. In parallel experiment, LPS blockade of IGF-I/-II signals caused by GH could be partially reverted by TNFα receptor antagonism. At hepatocyte level, TNFα induction also triggered rapid phosphorylation of IκBα, MEK1/2, ERK1/2, MKK3/6, P38MAPK, Akt, JAK2, and STAT1,3,5, and TNFα-induced SOCS1, SOCS3, and CISH mRNA expression could be negated by inhibiting the IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT cascades. Our findings, as a whole, suggest that local production of TNFα may interfere with IGF-I/-II induction by GH in the carp liver by up-regulation of SOCS1, SOCS3, and CISH via IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT-dependent mechanisms, which may contribute to GH resistance induced by endotoxin in carp species.


Asunto(s)
Resistencia a Medicamentos , Hormona del Crecimiento/farmacología , Hepatocitos/efectos de los fármacos , Proteínas Supresoras de la Señalización de Citocinas/genética , Factor de Necrosis Tumoral alfa/farmacología , Animales , Carpas/genética , Carpas/crecimiento & desarrollo , Carpas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Endotoxinas/toxicidad , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Trastornos del Crecimiento/inducido químicamente , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Hepatocitos/metabolismo , Lipopolisacáridos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Eur J Clin Nutr ; 74(5): 741-748, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31932742

RESUMEN

BACKGROUND/OBJECTIVES: The results linking body iron stores to the risk of gestational diabetes mellitus (GDM) are conflicting. We aimed to measure the serum ferritin level of women in early pregnancy and evaluate the risk of GDM in a Chinese urban population. SUBJECTS/METHODS: In total, 851 pregnant women between 10 and 20 weeks of gestation took part in the prospective, observational study conducted. The women were divided into four groups by quartiles of serum ferritin levels (Q1-4). Their blood samples were collected and assayed for several biochemical variables at the beginning of the study, and the women were followed up with a 75-g oral glucose tolerance test at 24-28 weeks of gestation. RESULTS: The participants had an average serum ferritin concentration of 65.67 µg/L. GDM prevalence within each serum ferritin quartile was 9.4%, 14.6%, 18.8% and 19.3%, respectively, (P = 0.016). The odds ratio for GDM in the ferritin Q2-4 was 1.64 (CI: 0.90-2.99), 2.23 (CI: 1.26-3.96) and 2.31 (CI: 1.30-4.10), compared with Q1, respectively. This association persisted after adjusting for potential confounders factors. In addition, in Q4, pregnant women with a pre-pregnancy body mass index ≥24 kg/m2, maternal age ≤35 years old or haemoglobin≥ 110 g/L did have an increased risk of developing GDM. CONCLUSIONS: Elevated serum ferritin concentrations in early gestation are associated with an increased risk of GDM, especially in pregnant women who have a high baseline iron storage status with no anaemia or who are overweight/obese. Individual iron supplementation should be considered to minimize the risk of GDM.


Asunto(s)
Diabetes Gestacional/sangre , Diabetes Gestacional/diagnóstico , Ferritinas/sangre , Hiperferritinemia/sangre , Adulto , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Embarazo , Estudios Prospectivos , Factores de Riesgo
14.
Artículo en Inglés | MEDLINE | ID: mdl-31551932

RESUMEN

Glucagon, a key hormone for glucose homeostasis, can exert functional crosstalk with somatotropic axis via modification of IGF-I expression. However, its effect on IGF-I regulation is highly variable in different studies and the mechanisms involved are largely unknown. Using grass carp as a model, the signal transduction and transcriptional mechanisms for IGF-I regulation by glucagon were examined in Cyprinid species. As a first step, the carp HNF1α, a liver-enriched transcription factor, was cloned and confirmed to be a single-copy gene expressed in the liver. In grass carp hepatocytes, glucagon treatment could elevate IGF-I, HNF1α, and CREB mRNA levels, induce CREB phosphorylation, and up-regulate HNF1α and CREB protein expression. The effects on IGF-I, HNF1α, and CREB gene expression were mediated by cAMP/PKA and PLC/IP3/PKC pathways with differential coupling with the MAPK and PI3K/Akt cascades. During the process, protein:protein interaction between HNF1α and CREB and recruitment of RNA Pol-II to IGF-I promoter also occurred with a rise in IGF-I primary transcript level. In parallel study to examine grass carp IGF-I promoter activity expressed in αT3 cells, similar pathways for post-receptor signaling were also confirmed in glucagon-induced IGF-I promoter activation and the trans-activating effect by glucagon was mediated by the binding sites for HNF1α and CREB located in the proximal region of IGF-I promoter. Our findings, as a whole, shed light on a previously undescribed mechanism for glucagon-induced IGF-I gene expression by increasing HNF1α and CREB production via functional crosstalk of post-receptor signaling. Probably, by protein:protein interaction between the two transcription factors and subsequent transactivation via their respective cis-acting elements in the IGF-I promoter, IGF-I gene transcription can be initiated by glucagon at the hepatic level.

15.
Cells ; 8(8)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412674

RESUMEN

In mammals, the tachykinin 3 (TAC3)/tachykinin receptor 3 (TACR3) systems have been confirmed to play an important role in the regulation of puberty onset. Using grass carp pituitary cells as the model, our recent study found that the TAC3 gene products could significantly induce somatolactin α (SLα) synthesis and secretion via TACR3 activation. In the present study, we seek to examine if pituitary TACR3 can serve as a regulatory target and contribute to TAC3 interactions with other SLα regulators. Firstly, grass carp TACR3 was cloned and tissue distribution showed that it could be highly detected in grass carp pituitary. Using HEK293 cells as the model, functional expression also revealed that grass carp TACR3 exhibited ligand binding selectivity and post-receptor signaling highly comparable to its mammalian counterpart. Using grass carp pituitary cells as the model, TACR3 mRNA expression could be stimulated by insulin-like growth factor (IGF)-I and -II via the IGF-I receptor coupled to phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. Interestingly, IGF-I/-II cotreatment could also significantly enhance TAC3-induced SLα mRNA expression and the potentiating effect was dependent on TACR3 expression and activation of adenylate cyclase (AC)/cAMP/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/calmodulin-dependent protein kinase II (CaMK-II) cascades. Besides, IGF-I-induced Akt phosphorylation but not MEK, extracellular signal-regulated kinase (ERK1/2), and P38MAPK phosphorylation was notably enhanced by TACR3 activation. These results, as a whole, suggest that the potentiating effect of IGFs on TAC3 gene products-induced SLα mRNA expression was mediated by TACR3 upregulation and functional crosstalk of post-receptor signaling in the pituitary.


Asunto(s)
Carpas/crecimiento & desarrollo , Proteínas de Peces/metabolismo , Neuroquinina B/metabolismo , Hipófisis/efectos de los fármacos , Hormonas Hipofisarias/metabolismo , Receptores de Neuroquinina-3/metabolismo , Maduración Sexual/fisiología , Somatomedinas/farmacología , Animales , Carpas/metabolismo , Proteínas de Peces/fisiología , Células HEK293 , Humanos , Hipófisis/citología , Hipófisis/metabolismo , Receptores de Neuroquinina-3/genética , Desarrollo Sexual/fisiología , Maduración Sexual/efectos de los fármacos , Transducción de Señal
16.
Exp Neurol ; 311: 15-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30213506

RESUMEN

Mesenchymal stem cells (MSCs) treatment is an effective strategy for the functional repair of central nervous system (CNS) insults through the production of bioactive molecules. We have previously demonstrated that the interleukin-6 (IL-6) secreted by MSCs plays an anti-apoptotic role in injured astrocytes and partly promotes functional recovery in neonatal rats with hypoxic-ischemic brain damage (HIBD). However, the mechanisms of IL-6 underlying the proliferation of injured astrocytes have not been fully elucidated. In this study, we investigated the therapeutic effects of MSCs on astrocyte proliferation in neonatal rats subjected to HIBD. A HIBD model was established in Sprague Dawley (SD) rats, and MSCs were administered by intracerebroventricular injection 5 days after HIBD. Rat primary astrocytes were cultured, subjected to oxygen glucose deprivation (OGD) injury and then immediately co-cultured with MSCs in vitro. Immunofluorescence staining, Cell Counting Kit (CCK)-8, flow cytometry, Ca2+ imaging, enzyme-linked immunosorbent assay (ELISA), western blotting, and co-immunoprecipitation (Co-IP) were performed. We found that MSCs transplantation not only promoted the recovery of learning and memory function in HIBD rats but also significantly reduced the number of Ki67+/glial fibrillary acidic protein (GFAP)+ cells in the hippocampi 7-14 days after HIBD. In addition to increasing IL-6 expression in both the hippocampi of HIBD rats and astrocyte culture medium, MSCs treatment in vitro significantly increased the expression levels of glycoprotein (gp) 130 and phosphorylated AMP-activated protein kinase α (p-AMPKα) and decreased the expression levels of p-mammalian target of rapamycin (mTOR) and its downstream targets. Furthermore, MSCs treatment induced a protein-protein interaction between gp130 and p-AMPKα. Suppression of IL-6 expression in MSCs reversed the above regulatory functions of MSCs in hippocampal astrocytes. The utilization of rapamycin further confirmed that mTOR participated in the proliferation of reactive astrocytes. These findings suggest that endogenous IL-6 produced by MSCs in the HIBD microenvironment provides therapeutic advantages by activating AMPK/mTOR signaling, thus reducing the proliferation of reactive astrocytes.


Asunto(s)
Astrocitos/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Interleucina-6/biosíntesis , Trasplante de Células Madre Mesenquimatosas/métodos , Proteínas Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Animales Recién Nacidos , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Hipoxia-Isquemia Encefálica/terapia , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
17.
Front Pediatr ; 6: 382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30560112

RESUMEN

Hirschsprung Disease (HSCR) and/or hypoganglionosis are common pediatric disorders that arise from developmental deficiencies of enteric neural crest cells (ENCCs). Retinoid acid (RA) signaling has been shown to affect neural crest (NC) development. However, the mechanisms underlying RA deficiency-induced HSCR or hypoganglionosis are not well-defined. In this report, we found that in HSCR patient bowels, the RA nuclear receptor RARα and its interacting coregulator CREB-binding protein (CBP) were expressed in enteric neural plexuses in the normal ganglionic segment. However, the expression of these two genes was significantly inhibited in the pathological aganglionic segment. In a Xenopus laevis animal model, endogenous RARα interacted with CBP and was expressed in NC territory. Morpholino-mediated knockdown of RARα blocked expression of the NC marker genes Sox10 and FoxD3 and inhibited NC induction. The morphant embryos exhibited reduced nervous cells in the gastrointestinal anlage, a typical enteric nervous deficiency-associated phenotype. Injection of CBP mRNA rescued NC induction and reduced enteric nervous deficiency-associated phenotypes. Our work demonstrates that RARα regulates Sox10 expression via CBP during NC induction, and alteration of the RA-CBP signaling pathway may contribute to the development of enteric nervous system disorders.

18.
Artículo en Inglés | MEDLINE | ID: mdl-29977227

RESUMEN

In mammals, insulin is known to modify growth hormone (GH)-induced IGF-I expression at the hepatic level, which also contributes to the functional crosstalk between energy homeostasis and somatotropic axis. However, the studies on the comparative aspects of this phenomenon are limited and the mechanisms involved have not been fully characterized. Using a serum-free culture of grass carp hepatoctyes, the functional interaction between GH and insulin on hepatic expression of IGF-I and -II was examined in a fish model. In carp hepatocytes, GH could up-regulate IGF-I and -II mRNA expression via the JAK2/STAT5, MEK/ERK and PI3K/Akt pathways. These stimulatory effects were mimicked by insulin via activation of the PI3K/Akt but not MEK/ERK and P38 MAPK cascades. Although insulin did not activate JAK2 and STAT5 at hepatocyte level, insulin-induced IGF-I and -II mRNA expression were highly dependent on the normal functioning of JAK2/STAT5 pathway. In parallel experiments, insulin co-treatment was found to markedly enhance IGF-I and -II responses induced by GH and these potentiating effects were mediated by insulin receptor (InsR) but not IGF-I receptor. Interestingly, co-treatment with GH also enhanced insulin-induced InsR phosphorylation with a current elevation in protein:protein interaction between GH receptor and phosphorylated InsR and these stimulatory effects were noted with further enhancement in STAT5, ERK1/2 and Akt phosphorylation at hepatocyte level. Consistent with these findings, the potentiating effects of GH and insulin co-treatment on IGF-I and -II mRNA expression were found to be suppressed/abolished by inhibiting JAK2/STAT5, MEK/ERK and PI3K/Akt but not P38 MAPK pathways. These results, as a whole, suggest that insulin and GH can act in a synergistic manner in the carp liver to up-regulate IGF-I and -II expression through protein:protein interaction at the receptor level followed by potentiation in post-receptor signaling.

19.
Sci Rep ; 8(1): 4655, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545542

RESUMEN

In this study, structural analysis of grass carp prolactin (PRL) gene was performed and the signaling mechanisms for pituitary adenylate cyclase-activating peptide (PACAP) regulation of PRL promoter activity were investigated. In αT3-1 cells, PRL promoter activity could be induced by oPACAP38 which was blocked by PACAP antagonist but not the VIP antagonist. The stimulatory effect of oPACAP38 was mimicked by activation of AC/cAMP and voltage-sensitive Ca2+ channel (VSCC) signaling, or induction of Ca2+ entry. In parallel, PACAP-induced PRL promoter activity was negated or inhibited by suppressing cAMP production, inhibiting PKA activity, removal of extracellular Ca2+, VSCC blockade, calmodulin (CaM) antagonism, and inactivation of CaM kinase II. Similar sensitivity to L-type VSCC, CaM and CaM kinase II inhibition were also observed by substituting cAMP analog for oPACAP38 as the stimulant for PRL promoter activity. Moreover, PACAP-induced PRL promoter activity was also blocked by inhibition of PLC signaling, attenuation of [Ca2+]i immobilization via IP3 receptors, and blockade of PI3K/P70S6K pathway. The PACAP-induced PRL promoter activation may involve transactivation of the transcription factor CREB. These results suggest that PACAP can stimulate PRL promoter activation by PAC1 mediated functional coupling of the Ca2+/CaM/CaM kinase II cascades with the AC/cAMP/PKA pathway. Apparently, other signaling pathways, including PLC/IP3 and PI3K/P70S6K cascades, may also be involved in PACAP induction of PRL gene transcription.


Asunto(s)
Carpas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sustancias de Crecimiento/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Prolactina/genética , Regiones Promotoras Genéticas , Transducción de Señal/efectos de los fármacos , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Carpas/genética , Carpas/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipófisis/metabolismo , Prolactina/metabolismo , Transcripción Genética
20.
Gen Comp Endocrinol ; 265: 90-96, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355530

RESUMEN

Spexin (SPX), a novel peptide coevolved with the galanin/kisspeptin family, was first identified by bioinformatics prior to its protein purification/functional studies. Its mature peptide is highly conserved among different vertebrate classes. Based on the studies in mammals and fish models, SPX was found to be widely distributed at tissue level, secreted into systemic circulation, identified at notable levels in central nervous system and peripheral tissues, and has been confirmed/implicated in multiple functions in different tissues/organs, suggesting that SPX may serve as a neuroe​ndocrine signal with pleotropic functions. In this article, different isoforms of SPX and their binding with their cognate receptors GalR2 and GalR3, the biological functions of SPX reported in mammals including GI tract movement, energy balance and weight loss, fatty acid uptake, glucose homeostasis, nociception and cardiovascular/renal functions, as well as the recent findings in fish models regarding the role of SPX in reproduction and feeding control will be reviewed with interesting questions for future investigations.


Asunto(s)
Sistemas Neurosecretores/metabolismo , Hormonas Peptídicas/metabolismo , Secuencia de Aminoácidos , Animales , Peces/metabolismo , Galanina/metabolismo , Humanos , Mamíferos/metabolismo , Hormonas Peptídicas/química , Filogenia , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...