Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
World J Clin Cases ; 12(18): 3629-3635, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38983401

RESUMEN

BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39027976

RESUMEN

Quercetin is kown for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully eucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cells apoptosis in the renal tissues of Ang II-infused mice and Ang II- stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2 and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts (DETs), as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Additionally, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells, and by targeting p53 may be one of the potential underlying mechanisms.

3.
J Ethnopharmacol ; : 118599, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043352

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlin Baizhu Decoction (SLBZD), which comes from 'Taiping Huimin Heji Ju Fang', belongs to a classical prescription for treating spleen deficiency and dampness obstruction (SQDDS)-type ulcerative colitis (UC) in traditional Chinese medicine. However, the mechanism of SLBZD in treating UC with SQDDS remains unclear. AIM OF THE STUDY: This study aims to investigate the mechanism of SLBZD against SQDDS-type UC of based on the "gut microbiota and metabolism - bone marrow" axis to induce endogenous bone marrow mesenchymal stem cells (BMSCs) homing. MATERIALS AND METHODS: Ultra-performance liquid chromatography- mass spectrometry was used to analysis of SLBZD qualitatively. The efficacy of SLBZD in SQDDS-type UC was evaluated based on the following indicators: the body weight, colon length disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, and intestinal permeability proteins (occluding and ZO-1). 16S rRNA gene sequencing and non-target metabolomics were performed to identify gut microbiota changes and its metabolites in feces, respectively. BMSCs in each group was collected, cultured, and analyzed. Optimal passaged BMSCs were injected by tail vein into UC rats of SQDDS types. BMSCs homing to the colonic mucosal tissue was observed by immunofluorescent. Finally, the repairing effect of BMSCs homing to the colonic mucosal tissue after SLBZD treatment was analyzed by transmission electron microscopy, qRT-PCR, and immunohistochemistry. RESULTS: SLBZD effectively improved the colonic length and the body weight, scores, reduced DAI and H&E scores, and increased the expression of the intestinal permeability proteins, including occluding and ZO-1, to treat SQDDS-type UC. After SLBZD treatment, the α-diversity and ß-diversity of the gut microbiota were improved. The differential microbiota was screened as Aeromonadaceae, Lactobacillaceae, and Clostridiaceae at the family level, and Aeromonas, Lactobacillus, Clostridium_sensu_stricto_1 at the genus level. Meanwhile, the main metabolic pathway was the galactose metabolism pathway. SLBZD treatment timely corrected the aberrant levels of ß-galactose in peripheral blood and bone marrow, senescence-associate-ß-galactosidase in BMSCs, and galactose kinase-2, galactose mutase, and galactosidase beta-1 in peripheral blood to further elevate the expression levels of SA proteins (p16, p53, p21, and p27) in BMSCs. The Spearman's correlation analysis demonstrated the relationship between microbiota and metabolism, and the relationship between the galactose metabolism pathway and SA proteins. After BMSCs in each group injection via the tail vein, the pharmacodynamic effects were consistent with those of SLBZD in SQDDS-type UC rats. Furthermore, BMSCs have been homing to colonic mucosal tissue. BMSCs from the SLBZD treatment group had stronger restorative effects on intestinal permeability function due to increasing protein and mRNA expressions of occludin and ZO-1, and decreasing the proteins and mRNA expressions of SDF-1 and CXCR4 in colon. CONCLUSIONS: SLBZD alleviated the damaged structure of gut microbiota and regulated their metabolism, specifically the galactose metabolism, to treat UC of SDDOS types. SLBZD treatment promotes endogenous BMSCs homing to colonic mucosal tissue to repaire the intestinal permeability. The current exploration revealed an underlying mechanism wherein SLBZD activates endogenous BMSCs by targeting 'the gut microbiota and its metabolism-bone marrow' axis and repairs colonic mucosal damage for to treat SDDOS-type UC.

4.
Scand J Clin Lab Invest ; : 1-11, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953609

RESUMEN

INTRODUCTION: There are important pharmacological differences between direct oral anticoagulants (DOAC) and a deeper knowledge of how they influence different aspects of hemostasis in patients on treatment is desirable. MATERIALS AND METHODS: Blood samples from patients on dabigatran (n = 23), rivaroxaban (n = 26), or apixaban (n = 20) were analyzed with a fibrin network permeability assay, a turbidimetric clotting and lysis assay, the calibrated automated thrombogram (CAT), plasma levels of thrombin-antithrombin complex (TAT) and D-dimer, as well as DOAC concentrations, PT-INR and aPTT. As a comparison, we also analyzed samples from 27 patients on treatment with warfarin. RESULTS: Patients on dabigatran had a more permeable fibrin network, longer lag time (CAT and turbidimetric assay), and lower levels of D-dimer in plasma, compared with patients on rivaroxaban- and apixaban treatment, and a more permeable fibrin network than patients on warfarin. Clot lysis time was slightly longer in patients on dabigatran than in patients on rivaroxaban. Warfarin patients formed a more permeable fibrin network than patients on apixaban, had longer lag time than patients on rivaroxaban (CAT assay), and lower peak thrombin and ETP compared to patients on treatment with both FXa-inhibitors. CONCLUSIONS: Results from this study indicate dabigatran treatment is a more potent anticoagulant than apixaban and rivaroxaban. However, as these results are not supported by clinical data, they are probably more related to the assays used and highlight the difficulty of measuring and comparing the effect of anticoagulants.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38861240

RESUMEN

Both the BDNF gene rs6265 and the FKBP5 gene rs1360780 polymorphisms are independently associated with adult psychotic-like experiences, when exposed to high childhood abuse; however, it remains unclear whether the relationship between childhood abuse and burnout is moderated by these two single nucleotide polymorphisms (SNPs). Furthermore, there is an interaction between glucocorticoid receptor transcriptional activity and BDNF signaling. Therefore, we investigated the interaction of these two SNPs with childhood trauma in predicting burnout. We recruited 990 participants (mean age 33.06 years, S.D. = 6.31) from general occupational groups and genotyped them for rs6265 and rs1360780. Burnout, childhood trauma, resilience, and job stress were measured through a series of rating scales. Gene-by-environment and gene-by-gene-by-environment interactions were examined using linear hierarchical regression and PROCESS macro in SPSS. Covariates included demographics and resilience. We found that rs6265 moderated the association between job stress and emotional exhaustion. Both rs6265 and rs1360780 moderated the association between childhood abuse and cynicism. There was significant interaction of childhood abuse × rs6265 × rs1360780 on emotional exhaustion and reduced personal accomplishment, so that rs6265 CC genotype and rs1360780 TT genotype together predicted higher levels of emotional exhaustion under high childhood abuse, while rs6265 TT genotype and rs1360780 CC genotype together exerted a resilient effect on reduced personal accomplishment in the face of childhood abuse. Our findings suggest that the rs6265 CC genotype and rs1360780 TT genotype may jointly contribute to increased risk of burnout under childhood trauma.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38879068

RESUMEN

BACKGROUND: Interactions between the serotonin (5-HT) and endocannabinoid (eCB) systems have been reported in the psychopathology of stress-related symptoms, while their interplay in regulating the relationship between childhood trauma and burnout remains unclear. In this study, we investigated the interaction of childhood trauma with genetic polymorphisms in these two systems in predicting burnout. METHODS: Burnout, childhood trauma, and job stress were assessed using rating scales in 992 general occupational individuals. Genetic polymorphisms including HTR2A rs6313, 5-HTT rs6354 and FAAH rs324420, were genotyped. Linear hierarchical regression analysis and PROCESS macro in SPSS were used to examine two- and three-way interactions. RESULTS: There were significant interactions of job stress × HTR2A rs6313 and childhood abuse × FAAH rs324420 on reduced personal accomplishment. Moreover, we found significant three-way interactions of childhood abuse × FAAH rs324420 × HTR2A rs6313 on cynicism and reduced personal accomplishment, childhood abuse × FAAH rs324420 × 5-HTT rs6354 on emotional exhaustion, and childhood neglect × FAAH rs324420 × 5-HTT rs6354 on reduced personal accomplishment. These results suggest that the FAAH rs324420 A allele carriers, when with some specific genetic polymorphisms of 5-HT system, would show more positive associations between childhood trauma and burnout. CONCLUSIONS: Genetic polymorphisms in the 5-HT and eCB systems may jointly moderate the impact of childhood trauma on burnout.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Receptor de Serotonina 5-HT2A , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Masculino , Femenino , Endocannabinoides/genética , Endocannabinoides/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adulto , Amidohidrolasas/genética , Receptor de Serotonina 5-HT2A/genética , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Agotamiento Profesional/genética , Agotamiento Profesional/psicología , Serotonina/metabolismo , Serotonina/genética , Experiencias Adversas de la Infancia/psicología , Maltrato a los Niños/psicología
7.
Front Oncol ; 14: 1392899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715787

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2019.00033.].

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124407, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723466

RESUMEN

Copper is one of the common among the heavy metal pollution in Chinese herbal medicine (CHM). So, it is essential to develop rapid and accurate testing method to quantify the Cu2+ content in CHM. Herein, we prepared a coordination-based near-infrared fluorescent probe (NRh6G-FA) by introducing a hemicyanine dye in rhodamine 6G scaffold. NRh6G-FA had a high sensitivity, anti-interference performance, fast response (within 60 s), visualization (from light yellow to green) for Cu2+ and excellent sensing performance for the detection of Cu2+ at low concentrations (LOD = 0.225 µM). The most likely mechanism was verified on the basis of Job's plot, ESI-HRMS and DFT calculations. NRh6G-FA could be successfully applied for the detection and "naked eye" recognition of Cu2+ in CHM samples. Moreover, NRh6G-FA was used to visualize Cu2+ in living MCF-7 cells by confocal fluorescence imaging.


Asunto(s)
Cobre , Medicamentos Herbarios Chinos , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cobre/análisis , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Células MCF-7 , Rodaminas/química , Imagen Óptica , Espectrometría de Fluorescencia/métodos , Límite de Detección
9.
Nat Prod Res ; : 1-6, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587144

RESUMEN

Fungi have different genetic expression abilities and biosynthetic pathways under different cultivation conditions, which can produce various secondary metabolites. The "one strain many compounds" strategy is used to activate silent biosynthetic genes of fungi to produce various compounds, which is an effective method. In order to discover various new compounds in the edible fungus Pholiota nameko, a fermentation strategy involving precursor feeding and enzyme inhibitor addition has been employed. A new illudane sesquiterpene (1), along with one known indole diterpenoid alkaloid, cladosporine A (2) were isolated from the extracts of liquid culture of P. nameko. The new compound was identified by combination of 1D and 2D NMR, MS, optical rotation, and ECD calculations. We conducted experiments on the cytotoxicity of all isolated compounds on three cancer cell lines, but we did not observe any significant cytotoxicity (IC50 > 40 µM).

10.
Mar Drugs ; 22(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38393047

RESUMEN

Patients with ulcerative colitis (UC) have higher rates of depression. However, the mechanism of depression development remains unclear. The improvements of EPA and DHA on dextran sulfate sodium (DSS)-induced UC have been verified. Therefore, the present study mainly focused on the effects of EPA and DHA on UC-induced depression in C57BL/6 mice and the possible mechanisms involved. A forced swimming test and tail suspension experiment showed that EPA and DHA significantly improved DSS-induced depressive-like behavior. Further analysis demonstrated that EPA and DHA could significantly suppress the inflammation response of the gut and brain by regulating the NLRP3/ASC signal pathway. Moreover, intestine and brain barriers were maintained by enhancing ZO-1 and occludin expression. In addition, EPA and DHA also increased the serotonin (5-HT) concentration and synaptic proteins. Interestingly, EPA and DHA treatments increased the proportion of dominant bacteria, alpha diversity, and beta diversity. In conclusion, oral administration of EPA and DHA alleviated UC-induced depressive-like behavior in mice by modulating the inflammation, maintaining the mucosal and brain barriers, suppressing neuronal damage and reverting microbiota changes.


Asunto(s)
Colitis Ulcerosa , Humanos , Ratones , Animales , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Colitis Ulcerosa/metabolismo , Transducción de Señal , Inflamación/metabolismo , Modelos Animales de Enfermedad , Colon/metabolismo
11.
Ups J Med Sci ; 1292024.
Artículo en Inglés | MEDLINE | ID: mdl-38327640

RESUMEN

While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. Our analysis revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly enhances the initiation of thrombin generation. However, it is noteworthy that the thrombin generation may be modulated by specific anticoagulants present in patients' plasma. Consequently, higher levels of fibrinogen appear to play a more pivotal role in promoting coagulation in COVID-19, as opposed to thrombin generation. Furthermore, the viral infection can stimulate platelet activation either through widespread dissemination from the lungs to other organs or localized effects on platelets themselves. An imbalance between Von Willebrand Factor (VWF) and ADAMTS-13 also contributes to an exaggerated platelet response in this disease, in addition to elevated D-dimer levels, coupled with a significant increase in fibrin viscoelasticity. This paradoxical phenotype has been identified as 'fibrinolysis shutdown'. To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.


Asunto(s)
Trastornos de la Coagulación Sanguínea , COVID-19 , Trombosis , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Trombina , Inflamación , Fibrina
12.
BMC Cardiovasc Disord ; 24(1): 71, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267845

RESUMEN

BACKGROUND: As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS: A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS: In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS: BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , ARN Circular/genética , Leucocitos Mononucleares , Biología Computacional , ARN Mensajero/genética , Proteínas Adaptadoras Transductoras de Señales , MicroARNs/genética
13.
Commun Biol ; 7(1): 135, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280981

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated infectious diarrhea. The development of C.difficile infection is tied to perturbations of the bacterial community in the gastrointestinal tract, called the gastrointestinal microbiota. Repairing the gastrointestinal microbiota by introducing lab-designed bacterial communities, or defined microbial communities, has recently shown promise as therapeutics against C.difficile infection, however, the mechanisms of action of defined microbial communities remain unclear. Using an antibiotic- C.difficile mouse model, we report the ability of an 18-member community and a refined 4-member community to protect mice from two ribotypes of C.difficile (CD027, CD078; p < 0.05). Furthermore, bacteria-free supernatant delivered orally to mice from the 4-member community proteolyzed C.difficile toxins in vitro and protected mice from C.difficile infection in vivo (p < 0.05). This study demonstrates that bacteria-free supernatant is sufficient to protect mice from C.difficile; and could be further explored as a therapeutic strategy against C.difficile infection.


Asunto(s)
Infecciones por Clostridium , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Tracto Gastrointestinal/microbiología , Diarrea/prevención & control , Diarrea/microbiología , Bacterias , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/microbiología
14.
BMC Med Genomics ; 17(1): 15, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191380

RESUMEN

PURPOSE: We evaluated the value of copy number variation sequencing (CNV-seq) and quantitative fluorescence (QF)-PCR for analyzing chromosomal abnormalities (CA) in spontaneous abortion specimens. METHODS: A total of 650 products of conception (POCs) were collected from spontaneous abortion between April 2018 and May 2020. CNV-seq and QF-PCR were performed to determine the characteristics and frequencies of copy number variants (CNVs) with clinical significance. The clinical features of the patients were recorded. RESULTS: Clinically significant chromosomal abnormalities were identified in 355 (54.6%) POCs, of which 217 (33.4%) were autosomal trisomies, 42(6.5%) were chromosomal monosomies and 40 (6.2%) were pathogenic CNVs (pCNVs). Chromosomal trisomy occurs mainly on chromosomes 15, 16, 18, 21and 22. Monosomy X was not associated with the maternal or gestational age. The frequency of chromosomal abnormalities in miscarriages from women with a normal live birth history was 55.3%; it was 54.4% from women without a normal live birth history (P > 0.05). There were no significant differences among women without, with 1, and with ≥ 2 previous miscarriages regarding the rate of chromosomal abnormalities (P > 0.05); CNVs were less frequently detected in women with advanced maternal age than in women aged ≤ 29 and 30-34 years (P < 0.05). CONCLUSION: Chromosomal abnormalities are the most common cause of pregnancy loss, and maternal and gestational ages are strongly associated with fetal autosomal trisomy aberrations. Embryo chromosomal examination is recommended regardless of the gestational age, modes of conception or previous abortion status.


Asunto(s)
Aborto Espontáneo , Síndrome de Turner , Embarazo , Humanos , Femenino , Aborto Espontáneo/genética , Variaciones en el Número de Copia de ADN , Trisomía/genética , Aberraciones Cromosómicas
15.
Alzheimers Res Ther ; 16(1): 22, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281031

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS: Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS: We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aß clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS: This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Animales , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Macaca mulatta/metabolismo , Disfunción Cognitiva/patología , Hipocampo/patología , Péptidos beta-Amiloides/metabolismo
16.
Insect Sci ; 31(2): 599-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37489338

RESUMEN

Mosquitoes are of great medical significance as vectors of many deadly diseases. Mitogenomes have been widely used in phylogenetic studies, but mitogenome knowledge within the family Culicidae is limited, and Culicidae phylogeny is far from resolved. In this study, we surveyed the mitogenomes of 149 Culicidae species, including 7 newly sequenced species. Comparative analysis of 149 mosquito mitogenomes shows gene composition and order to be identical to that of an ancestral insect, and the AT bias, length variation, and codon usage are all consistent with that of other reported Dipteran mitogenomes. Phylogenetic analyses based on the DNA sequences of the 13 protein-coding genes from the 149 species robustly support the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini, Sabethini, and Toxorhynchitini. To resolve ambiguous relationships between clades within the subfamily Culicinae, we performed topological tests and show that Aedini is a sister to Culicini and that Uranotaeniini is a sister to (Mansoniini + (Toxorhynchitini + Sabethini)). In addition, we estimated divergence times using a Bayesian relaxation clock based on the sequence data and 3 fossil calibration points. The results show mosquitoes diverged during the Early Jurassic with massive Culicinae radiations during the Cretaceous, coincident with the emergence of angiosperms and the burst of mammals and birds. Overall, this study, which uses the largest number of Culicidae mitogenomes sequenced to date, comprehensively reveals the mitogenome characteristics and mitogenome-based phylogeny and divergence times of Culicidae, providing information for further studies on the mitogenome, phylogeny, evolution, and taxonomic revision of Culicidae.


Asunto(s)
Culicidae , Genoma Mitocondrial , Animales , Culicidae/genética , Filogenia , Teorema de Bayes , Mosquitos Vectores/genética , Mamíferos/genética
18.
Bioorg Chem ; 143: 107023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091719

RESUMEN

Cells of most eukaryotic species contain mitochondria, which play a role in physiological processes such as cellular senescence, metabolism, and autophagy. Viscosity is considered a key marker for many illnesses and is involved in several crucial physiological processes. Cyanide (CN-) can target cytochrome-c oxidase, disrupting the mitochondrial electron transport chain and causing cell death through asphyxiation. In this study, a fluorescent probe named HL-1, which targets mitochondria and measures viscosity and CN- levels, was designed and synthesized. HL-1 is viscosity-sensitive, with a linear correlation coefficient of up to 0.992. In addition, HL-1 was found to change color substantially during a nucleophilic addition reaction with CN-, which has a low detection limit of 47 nM. HL-1 not only detects viscosity and exogenous CN- in SKOV-3 cells and zebrafish but also monitors viscosity changes during mitochondrial autophagy in real time. Furthermore, HL-1 has been used successfully to monitor changes in mitochondrial membrane potential during apoptosis. Endogenous CN- in plant samples was quantified. HL-1 provides new ideas for studying viscosity and CN-.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Humanos , Colorantes Fluorescentes/metabolismo , Viscosidad , Cianuros , Mitocondrias/metabolismo , Células HeLa , Carbazoles/metabolismo
19.
Curr Eye Res ; 49(3): 280-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37970666

RESUMEN

PURPOSE: N-acetylserotonin (NAS) can reduce retinal ischemia-reperfusion injury (RIRI) by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway. Aflibercept is an anti-VEGF drug used to treat a variety of eye diseases. This study was performed to investigate the effect of combination therapy with N-acetylserotonin and aflibercept on RIRI and its mechanism. METHODS: The RIRI model was established by elevating the intraocular pressure. H&E staining was used to observe the pathological changes in the retinal tissue. Cell apoptosis was evaluated by TUNEL. The expression of cleaved caspase-3 in the retina was detected by immunofluorescence and western blotting. The levels of SOD, GSH-Px, and MDA in retinal tissue were measured by ELISA. The protein expression of cytoplasmic Nrf2, nuclear Nrf2, HO-1, Akt, and p-Akt was determined by western blotting. RESULTS: The results showed that combination therapy with NAS and aflibercept significantly alleviated retinal histopathological damage, decreased retinal thickness (from 335.49 ± 30.50 µm to 226.16 ± 17.20 µm, p < 0.001) and the rate of retinal apoptosis (from 28.27 ± 0.39% to 7.87 ± 0.19%, p < 0.001), and downregulated protein expression (from 2.42 ± 0.03 to 1.39 ± 0.03, p < 0.001) and positive expression (from 31.88 ± 0.52 to 25.36 ± 0.58, p < 0.001) of cleaved caspase-3. In addition, combination therapy with NAS and aflibercept also upregulated the levels of SOD (from 20.31 ± 0.18 to 29.66 ± 0.83, p < 0.001) and GSH-Px (from 13.62 ± 0.36 to 19.31 ± 0.82, p < 0.001) and downregulated the level of MDA (from 0.51 ± 0.01 to 0.41 ± 0.01, p < 0.001) to inhibit oxidative stress. Finally, combination therapy with NAS and aflibercept increased the protein expression of cytoplasmic Nrf2 (from 0.10 ± 0.002 to 0.85 ± 0.01, p < 0.001), nuclear Nrf2 (from 0.43 ± 0.01 to 0.88 ± 0.04, p < 0.001), and HO-1 (from 0.45 ± 0.03 to 0.91 ± 0.04, p < 0.001) and the p-Akt/Akt ratio (from 0.45 ± 0.02 to 0.81 ± 0.07, p < 0.001). CONCLUSIONS: Overall, combination therapy with NAS and aflibercept attenuated RIRI, and its mechanism may be related to inhibiting apoptosis and oxidative stress and activating the Akt/Nrf2 pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión , Daño por Reperfusión , Serotonina/análogos & derivados , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Caspasa 3/metabolismo , Ratas Sprague-Dawley , Estrés Oxidativo , Daño por Reperfusión/patología , Retina/metabolismo , Apoptosis , Superóxido Dismutasa/metabolismo
20.
Neural Regen Res ; 19(8): 1781-1788, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103245

RESUMEN

JOURNAL/nrgr/04.03/01300535-202408000-00032/figure1/v/2023-12-16T180322Z/r/image-tiff Over the past decade, a growing number of studies have reported transcription factor-based in situ reprogramming that can directly convert endogenous glial cells into functional neurons as an alternative approach for neuroregeneration in the adult mammalian central nervous system. However, many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry. In addition, concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tracing mice. In this study, we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ectopic expression of the neural transcription factor NeuroD1 in both proliferating reactive astrocytes and lineage-traced astrocytes in the mouse cortex. Time-lapse imaging over several weeks revealed the step-by-step transition from a typical astrocyte with numerous short, tapered branches to a typical neuron with a few long neurites and dynamic growth cones that actively explored the local environment. In addition, these lineage-converting cells were able to migrate radially or tangentially to relocate to suitable positions. Furthermore, two-photon Ca2+ imaging and patch-clamp recordings confirmed that the newly generated neurons exhibited synchronous calcium signals, repetitive action potentials, and spontaneous synaptic responses, suggesting that they had made functional synaptic connections within local neural circuits. In conclusion, we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuroregeneration and neural circuit reconstruction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...