Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(37): 19701-19710, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39219093

RESUMEN

The preparation of porous carbon is constrained by the extensive use and detrimental impact of activators and dopants. Therefore, developing green and efficient strategies that leverage the intrinsic properties and pretreatment of the materials to achieve self-activation and self-doping is particularly crucial for porous carbon materials. Herein, potassium histidine was utilized as the molecular salt precursor, attaining the efficient and streamlined preparation of porous carbon through a one-step carbonization process that enables self-activation, self-doping, and self-templating. More interestingly, the carbonization temperature significantly impacts the porous structure of the molecular salt precursors, the properties of the heteroatoms, and electrochemical performance. The designed electrodes exhibit high accessibility to electrolyte ions and effective ion-electron transport channels. Therefore, the optimal carbon material (KHis800) has an excellent mass-specific capacitance of 305.2 F g-1 at 0.2 A g-1, and a high capacitance retention rate of 115.6% (50,000 cycles at 5 A g-1). Notably, KHis800 also shows a maximum energy density of 19.6 Wh kg-1. This research is dedicated to exploring a more efficient preparation method for porous carbon material via molecular salts, offering insights for the sustainable development of carbon materials.

2.
Langmuir ; 40(37): 19665-19674, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39229748

RESUMEN

A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.

3.
Langmuir ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255345

RESUMEN

Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.

4.
Langmuir ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255466

RESUMEN

The incompatibility between electrolyte ions and electrode pore sizes, coupled with the extensive use of activators and dopants, significantly restricts the fabrication of porous carbon materials. Consequently, developing environmentally sustainable and efficient methodologies that exploit the intrinsic properties and pretreatment of materials to facilitate self-activation and self-doping becomes crucial. In this study, potassium histidine and magnesium histidine molecular salts were synthesized as precursors, enabling specific ion activation and bimetallic template-directed tunable porosity through a one-step carbonization process. Notably, the ratio of bimolecular salts significantly influenced the porous structure of carbon, the properties of heteroatoms, and the electrochemical performance. By optimizing the ratio, the porous carbon materials exhibited high accessibility to electrolyte ions and effective ion/electron transport channels. Consequently, the optimal sample (NOSPC-2) achieved a high specific capacitance of 318 F g-1 at 0.1 A g-1 and a good capacitance retention rate of 98.8% after 50,000 cycles at 5 A g-1. In addition, NOSPC-2 also boasted high energy density and power density, reaching 22 Wh kg-1 and 25 kW kg-1, respectively. This research represents a significant stride in advancing preparation technologies for small molecule derived porous carbon materials, providing valuable insights for the rational design of carbon electrode materials for capacitive energy storage.

5.
Int J Biol Macromol ; 278(Pt 4): 134890, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214836

RESUMEN

Fluorescent composites have widespread applications in many aspects. Wood-derived cellulose is a renewable, easily processed and biodegradable, and cellulose-based fluorescent composites are highly favored for in different fields. However, the existing cellulose-based fluorescent composites still have many urgent problems to be solved, such as unstable luminescence properties and easy shedding of luminescent substances, and the development of their practical applications is still a formidable challenge. Herein, a green and mild strategy for the in-situ controllable synthesis of cellulose-based fluorescent composites membrane (CFM) was developed. Firstly, delignified wood (DW) was modified with citric acid, and then lanthanide ions were introduced on modified DW through coordinated covalent bonds. Additionally, the luminescence mechanism of CFM is proposed. CFMs show adjustable color for decorative and light conversion and can be accurately identified for data protection, which increases the high value-added of cellulose-based composites. The stable luminescent properties were maintained after sonication for 30 min or solvent immersion for three months. Therefore, this work presents a new approach for the synthesis of CFM, which provides an environment-friendly strategy for manufacturing cellulose-based fluorescent materials, which is significant for the subsequent development of environment-friendly composites for anti-counterfeiting and decorative applications.


Asunto(s)
Celulosa , Color , Madera , Celulosa/química , Madera/química , Colorantes Fluorescentes/química
6.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893408

RESUMEN

The hierarchical porous carbon-based materials derived from biomass are beneficial for the enhancement of electrochemical performances in supercapacitors. Herein, we report the fabrication of nitrogen-doped 3D flower-like hierarchical porous carbon (NPC) assembled by nanosheets using a mixture of urea, ZnCl2, and starch via a low-temperature hydrothermal reaction and high-temperature carbonization process. As a consequence, the optimized mass ratio for the mixture is 2:2:2 and the temperature is 700 °C. The NPC structures are capable of electron transport and ion diffusion owing to their high specific surface area (1498.4 m2 g-1) and rich heteroatoms. Thereby, the resultant NPC electrodes display excellent capacitive performance, with a high specific capacitance of 249.7 F g-1 at 1.0 A g-1 and good cycling stability. Remarkably, this implies a superior energy density of 42.98 Wh kg-1 with a power density of 7500 W kg-1 in organic electrolyte for the symmetrical supercapacitor. This result verifies the good performance of as-synthesized carbon materials in capacitive energy storage applications, which is inseparable from the hierarchical porous features of the materials.

7.
Carbohydr Polym ; 335: 122067, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616090

RESUMEN

Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.

8.
Int J Biol Macromol ; 259(Pt 2): 129268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199536

RESUMEN

With the rapid development of the Internet of Things, nanogenerator as a green energy collection technology has attracted great attention in various fields. Specifically, the natural renewable nanocellulose as a raw material can significantly improve the environmental friendliness of the nanocellulose-based nanogenerators, which also makes the nanocellulose based nanogenerators expected to further develop in areas such as wearable devices and sensor networks. This paper mainly reports the application of nanocellulose in nanogenerator, focusing on the sensor. The types, sources and preparation methods of nanocellulose are briefly introduced. At the same time, the special structure of nanocellulose highlights the advantages of nanocellulose in nanogenerators. Then, the application of nanocellulose-based nanogenerators in sensors is introduced. Finally, the future development prospects and shortcomings of this nanogenerator are discussed.


Asunto(s)
Internet , Dispositivos Electrónicos Vestibles , Tecnología
9.
ChemSusChem ; 17(9): e202301703, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38180149

RESUMEN

Exploration of greatly efficient and steady non-noble oxygen evolution reaction (OER) electrocatalysts is of great significance in improving the overall efficiency of energy density systems such as regenerative fuel cells, water electrolyzes, and metal-air batteries. Herein, inspired by hierarchical 3D porous structures with open microchannels of natural wood, CoO@NiFe LDH sandwich-like nanosheets were anchored on the carbonized wood (CW) via electrodeposition and calcination strategies. The strong interactions between CoO nanosheets and NiFe LDH nanosheets endow CoO@NiFe LDH/CW electrocatalyst with high catalytic properties toward the OER comparable to CoO/CW and NiFe LDH/CW. The optimized CoO@NiFe LDH/CW electrocatalyst demonstrates good OER catalytic performance with an overpotential of 230 mV at 100 mA cm-2. This work presents an innovative approach to utilize renewable resources for constructing advanced free-standing catalysts.

10.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280285

RESUMEN

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

11.
Talanta ; 270: 125517, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091744

RESUMEN

Hydrogen sulfide (H2S) is a toxic contaminant and has great influence on many physiological processes. Due to various pathophysiological roles and environmental pollution problems, it is necessary to construct and develop simple and portable monitoring sensors for the precise detection of H2S. Herein, we developed a smartphone-adapted dual-mode detection platform by integrating the colorimetric and photothermal imaging analysis into a metal-organic framework-based chip (ZIF-8/Cu). Due to the nanoconfinement effect of ZIF-8, small-sized plasmonic CuS could be in-situ formed during the detection procedure of H2S and endowed the chips with excellent photothermal properties. By constructing a smartphone-adapted photothermal imager, the metal-organic framework-based chip could achieve a portable photothermal imaging analysis of H2S. Moreover, as the formed CuS was a good peroxidase-like nanozyme, the chips could also be used to trigger the enzymic catalytic reaction toward the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2, thus providing another colorimetric sensing mode by using a smartphone App. In this smartphone-adapted visualization platform, the portable chemosensors could simultaneously achieve double detection modes at one electrode, which provided a new pathway for the accurate detection of H2S and circumvented the false-positive or negative errors during the detection process. Besides, by using the finite difference time domain (FDTD) simulation method, the in-depth mechanism, including the plasmonic effect and spatial electromagnetic field distribution, was explored to provide a possible reason for the excellent sensing performance of the dual-mode visualization platform. This work provides a new insight into the construction of the accurate, portable and smart sensing platform in the visual screening of H2S.


Asunto(s)
Estructuras Metalorgánicas , Teléfono Inteligente , Peróxido de Hidrógeno , Catálisis , Colorimetría
12.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836840

RESUMEN

N, O Co-Doped porous carbon materials are promising electrode materials for supercapacitors. However, it is still a challenge to prepare high capacitance performance N, O Co-Doped porous carbon materials with balanced pore structure. In this work, a simple chemical blowing method was developed to produce hierarchal porous carbon materials with Zn(NO3)2·6H2O and Fe(NO3)3·9H2O as the foaming agents and precursors of dual templates. Soybean protein isolate served as a self-doping carbon source. The amount of Fe(NO3)3·9H2O influenced the microstructure, element content and capacitance performance of the obtained porous carbon materials. The optimized sample CZnFe-5 with the addition of 5% Fe(NO3)3·9H2O displayed the best capacitance performance. The specific capacitance reached 271 F g-1 at 0.2 A g-1 and retained 133 F g-1 at 100 A g-1. The CZnFe-5//CZnFe-5 symmetric supercapacitors delivered a maximum energy density of 16.83 Wh kg-1 and good stability with capacitance retention of 86.33% after 40,000 cycles tests at 50 A g-1. The symmetric supercapacitors exhibited potential applications in lighting LED bulbs with a voltage of 3 V. This work provides a new strategy for the synthesis of hierarchical porous carbon materials for supercapacitors from low-cost biomass products.

13.
Colloids Surf B Biointerfaces ; 228: 113412, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343506

RESUMEN

Antibiotics are commonly used to treat bacterial infections, but the misuse and abuse of antibiotics have given rise to a severe problem of the drug resistance of bacteria. Solving this problem has been a vitally important task in the modern medical arena. Antibacterial peptide (AMPs) has become a promising candidate drug to replace antibiotics because of their broad-spectrum antibacterial activity and their difficulty in making bacteria resistant. However, its wider clinical application is limited by the shortcomings of high cytotoxicity and low antibacterial efficiency. In this paper, we constructed an antibacterial peptide (Cu-GGH-KKLRKIAFK, abbreviated as Cu-GGH-AMP) with a DNA cleavage function. The peptide has two functional regions, the C-terminal antibacterial peptide PaDBS1R6F10 (KKLRLKIAFK) and the N-terminal Cu-GGH complex. PaDBS1R6F10 is a unique antibacterial peptide, which shows lower tendency to produce bacterial resistance than traditional antibiotics. Cu-GGG complexes are formed by chelating Cu with the classical amino terminal Cu (II)- and Ni (II) -Binding (ATCUN) motif GGH. In the presence of ascorbic acid, Cu-GGH can efficiently catalyze the oxidative cleavage of bacterial DNA, thus playing a synergistic antibacterial role with antibacterial peptides. The in vitro and in vivo experiments demonstrated this functionalized antibacterial peptide possesses excellent antibacterial and anti-skin infection capability, as well as the activity of promoting wound healing.


Asunto(s)
Antiinfecciosos , Desinfección , División del ADN , Cobre/farmacología , Cobre/química , Péptidos/farmacología , Péptidos/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
14.
ACS Nano ; 17(10): 8866-8898, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37126761

RESUMEN

The emergence and development of thick electrodes provide an efficient way for the high-energy-density supercapacitor design. Wood is a kind of biomass material with porous hierarchical structure, which has the characteristics of a straight channel, uniform pore structure, good mechanical strength, and easy processing. The wood-inspired low-tortuosity and vertically aligned channel architecture are highly suitable for the construction of thick electrochemical supcapacitor electrodes with high energy densities. This review summarizes the design concepts and processing parameters of thick electrode supercapacitors inspired by natural woods, including wood-based pore structural design regulation, electric double layer capacitances (EDLCs)/pseudocapacitance construction, and electrical conductivity optimization. In addition, the optimization strategies for preparing thick electrodes with wood-like structures (e.g., 3D printing, freeze-drying, and aligned-low tortuosity channels) are also discussed in detail. Further, this review presents current challenges and future trends in the design of thick electrodes for supercapacitors with wood-inspired pore structures. As a guideline, the brilliant blueprint optimization will promote sustainable development of wood-inspired structure design for thick electrodes and broaden the application scopes.

15.
Talanta ; 259: 124489, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003182

RESUMEN

To design highly efficient electrochemistry system was important for construct simple and sensitive biosensors, which was crucial in clinical diagnosis and therapy. In this work, a novel electrochemistry probe N,N'-di (1-hydroxyethyl dimethylaminoethyl) perylene diimide (HDPDI) with positive charges was reported to show two-electron redox behavior in neutral phosphate buffer solution between 0 and -1.0 V. And K2S2O8 in solution could significantly increase the reduction current of HDPDI at -0.29 V, which was interpreted with cyclic catalysis mechanism of K2S2O8. Moreover, HDPDI as electrochemical probe and K2S2O8 as signal enhancer was used to design aptasensors for protein detection. Thrombin was used as target model protein. Thiolate ssDNA with thrombin-binding sequence was immobilized on gold electrode to selectively capture thrombin and adsorb HDPDI. The thiolate ssDNA without binding with thrombin was with random coil structure and could adsorb HDPDI through electrostatic attraction interaction. However, the thiolate ssDNA binding with thrombin became G-quadruplex structure and hardly adsorbed HDPDI. Thus, with increasing the concentration of thrombin, the current signal stepwisely decreased and was taken as detection signal. Compared with other aptasensors based on electrochemistry molecules without signal enhancer, the proposed aptasensors exhibited wider linear response for thrombin between 1 pg mL-1 and 100 ng mL-1 with lower detection limit 0.13 pg mL-1. In addition, the proposed aptasensor showed good feasibility in human serum samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , G-Cuádruplex , Perileno , Humanos , Trombina/química , Aptámeros de Nucleótidos/química , Oro/química , ADN de Cadena Simple , Técnicas Electroquímicas , Límite de Detección
16.
J Mater Chem B ; 11(11): 2367-2376, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734608

RESUMEN

Efficient and spatiotemporally controllable cleavage of deoxyribonucleic acid (DNA) is of great significance for both disease treatment (e.g. tumour, bacterial infection, etc) and molecular biology applications (e.g. gene editing). The recently developed light-induced cleavage strategy based on catalytic nanoparticles has been regarded as a promising strategy for DNA controllable cleavage. Although the regulation based on orthogonal light in biomedical applications holds more significant advantages than that based on single light, nanoparticle-mediated DNA cleavage based on orthogonal light has yet to be reported. In this article, for the first time, we demonstrated an orthogonal light-regulated nanosystem for efficient and spatiotemporal DNA cleavage. In this strategy, tungsten oxide (WO3) nanoparticles with photochromic properties were used as nano-antennae to convert the photoenergy from the orthogonal visible light (405 nm) and near-infrared light (808 nm) into chemical energy for DNA cleavage. We verified that only the orthogonal light can trigger high cleavage efficiency on different types of DNA. Moreover, such an orthogonal light-response nano-system can not only induce significant apoptosis of tumour cells, but also effectively eliminate bacterial biofilms.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , División del ADN , Nanopartículas/química , Rayos Infrarrojos , ADN
17.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838820

RESUMEN

Self-supporting electrode materials with the advantages of a simple operation process and the avoidance of the use any binders are promising candidates for supercapacitors. In this work, carbon-based self-supporting electrode materials with nanosheets grown on Al foil were prepared by combining hydrothermal reaction and the one-step chemical vapor deposition method. The effect of the concentration of the reaction solution on the structures as well as the electrochemical performance of the prepared samples were studied. With the increase in concentration, the nanosheets of the samples became dense and compact. The CNS-120 obtained from a 120 mmol zinc nitrate aqueous solution exhibited excellent electrochemical performance. The CNS-120 displayed the highest areal capacitance of 6.82 mF cm-2 at the current density of 0.01 mA cm-2. Moreover, the CNS-120 exhibited outstanding rate performance with an areal capacitance of 3.07 mF cm-2 at 2 mA cm-2 and good cyclic stability with a capacitance retention of 96.35% after 5000 cycles. Besides, the CNS-120 possessed an energy density of 5.9 µWh cm-2 at a power density of 25 µW cm-2 and still achieved 0.3 µWh cm-2 at 4204 µW cm-2. This work provides simple methods to prepared carbon-based self-supporting materials with low-cost Al foil and demonstrates their potential for realistic application of supercapacitors.


Asunto(s)
Araceae , Carbono , Capacidad Eléctrica , Electrodos , Gases
19.
Front Chem ; 10: 1055865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339046

RESUMEN

5-Hydroxymethylfurfural (HMF) has aroused considerable interest over the past years as an important biomass-derived platform molecule, yielding various value-added products. The conventional HMF conversion requires noble metal catalysts and harsh operating conditions. On the other hand, the electrocatalytic conversion of HMF has been considered as an environmentally benign alternative. However, its practical application is limited by low overall energy efficiency and incomplete conversion. Paired electrolysis and highly efficient electrocatalysts are two viable strategies to address these limitations. Herein, an overview of coupled electrocatalytic HMF hydrogenation or hydrogen evolution reaction (HER) with HMF oxidation as well as the associated electrocatalysts are reviewed and discussed. In this mini-review, a brief introduction of electrocatalytic HMF upgrading is given, followed by the recent advances and challenges of paired electrolysis with an emphasis on the integration HMF electrohydrogenation with HMF electrooxidation. Finally, a perspective for a future sustainable biomass upgrading community based on electrocatalysis is proposed.

20.
Chem Asian J ; 17(20): e202200727, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35997551

RESUMEN

A macrocyclic tetradentate chelate Pt(II) molecule (Pt1) served as an excellent luminophore in electrochemiluminescence (ECL) processes. The blue ECL of Pt1/S2 O8 2- coreactant system in N,N'-dimethylformamide was found to be 46 times higher than that of the Ru(bpy)2+ /S2 O8 2- system or 30 times higher than that of the 9,10-diphenylanthracene/S2 O8 2- system. The unprecedented high ECL quantum efficiencies were caused by the cyclic generation of monomer excited states through collisional interactions of Pt1 molecules with the electrode at an elevated frequency. The ECL is tunable from bright blue to pure white by simply changing the solvent from N,N'-dimethylformamide to dichloromethane. The white ECL of Pt(II) molecule was reported for the first time and the mechanism was proposed to be the simultaneous emissions from the monomer excited state (blue) and excimer (red).


Asunto(s)
Dimetilformamida , Cloruro de Metileno , Electrodos , Solventes , Mediciones Luminiscentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...