Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; : e2305779, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764279

RESUMEN

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

2.
Chem Sci ; 15(9): 3330-3338, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425530

RESUMEN

The reduction of CO2 into value-added chemicals and fuels has been actively studied as a promising strategy for mitigating carbon dioxide emissions. However, the dilemma for the experimentalist in choosing an appropriate reaction medium and neglecting the effect of solvent ions when using a simple thermochemical model, normally leads to the disagreement between experimental observations and theoretical calculations. In this work, by considering the effects of both the anion and cation, a more realistic CO2 reduction environment at the solid-liquid interface between copper and solvent ions has been systematically studied by using ab initio molecular dynamics and density functional theory. We revealed that the co-occurrence of alkali ions (K+) and halide ions (F-, Cl-, Br-, and I-) in the electric double layer (EDL) can enhance the adsorption of CO2 by more than 0.45 eV compared to that in pure water, and the calculated energy barrier for CO-CO coupling also decreases 0.32 eV in the presence of I ion on a negatively charged copper electrode. The hydrated ions can modulate the distribution of the charge near the solid-liquid interface, which significantly promotes CO2 reduction and meanwhile impedes the hydrogen evolution reaction. Therefore, our work unveils the significant role of halide ions at the electrode-electrolyte interface for promoting CO2 reduction on copper electrode.

3.
J Am Chem Soc ; 146(11): 7698-7707, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466356

RESUMEN

High entropy alloys (HEAs) are a highly promising class of materials for electrocatalysis as their unique active site distributions break the scaling relations that limit the activity of conventional transition metal catalysts. Existing Bayesian optimization (BO)-based virtual screening approaches focus on catalytic activity as the sole objective and correspondingly tend to identify promising materials that are unlikely to be entropically stabilized. Here, we overcome this limitation with a multiobjective BO framework for HEAs that simultaneously targets activity, cost-effectiveness, and entropic stabilization. With diversity-guided batch selection further boosting its data efficiency, the framework readily identifies numerous promising candidates for the oxygen reduction reaction that strike the balance between all three objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.

4.
Proc Natl Acad Sci U S A ; 121(13): e2313239121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498710

RESUMEN

High-entropy alloy nanoparticles (HEANs) possessing regulated defect structure and electron interaction exhibit a guideline for constructing multifunctional catalysts. However, the microstructure-activity relationship between active sites of HEANs for multifunctional electrocatalysts is rarely reported. In this work, HEANs distributed on multi-walled carbon nanotubes (HEAN/CNT) are prepared by Joule heating as an example to explain the mechanism of trifunctional electrocatalysis for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. HEAN/CNT excels with unmatched stability, maintaining a 0.8V voltage window for 220 h in zinc-air batteries. Even after 20 h of water electrolysis, its performance remains undiminished, highlighting exceptional endurance and reliability. Moreover, the intrinsic characteristics of the defect structure and electron interaction for HEAN/CNT are investigated in detail. The electrocatalytic mechanism of trifunctional electrocatalysis of HEAN/CNT under different conditions is identified by in situ monitoring and theoretical calculation. Meanwhile, the electron interaction and adaptive regulation of active sites in the trifunctional electrocatalysis of HEANs were further verified by density functional theory. These findings could provide unique ideas for designing inexpensive multifunctional high-entropy electrocatalysts.

5.
Small ; : e2311638, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342598

RESUMEN

Potassium-ion batteries (PIBs) have attracted much attention due to their low production cost and abundant resources. Germanium is a promising alloying-type anode with a high theoretical capacity for PIBs, yet suffering significant volume expansion and sluggish potassium-ion transport kinetics. Herein, a rational strategy is formulated to disperse Ge atoms into transition metal V-S sulfide frameworks to form a loosely packed and metallic GeV4 S8 medium. The theoretical prediction shows that GeV4 S8 is conducive to the adsorption and diffusion of K+ . The V-S frameworks provide fast ion/electron diffusion channels and also help to buffer the volume expansion during K+ insertion. In situ and ex situ characterizations manifest that KGe alloy clusters are constrained and dispersed by potassiated VS2 topological structure during discharging, and revert to the original GeV4 S8 after charging. Consequently, as a novel anode for PIBs, GeV4 S8 provides a high specific capacity of ≈400 mAh g-1 at 0.5 C, maintaining 160 mAh g-1 even at 12.5 C and ≈80% capacity after 1000 cycles at 5 C, superior to most of the state-of-the-art anode materials. The proposed strategy of combining alloy and intercalation dual-functional units is expected to open up a new way for high-capacity and high-rate anode for PIBs.

6.
J Am Chem Soc ; 146(9): 5987-5997, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381029

RESUMEN

Electronic structure, particularly charge state analysis, plays a crucial role in comprehending catalytic mechanisms. This study focuses on metal-free boron carbonitride (BCN) nanosheets as a case study to investigate the impact of heteroatom doping on the charge state of active sites at the edge of two-dimensional (2D) metal-free nanomaterials. Our observations revealed that the doping induces a shift in the frontier py orbital near the Fermi level, accompanied by alterations in its charge state. These changes provide insights into the nitrogen adsorption descriptors and the critical hydrogenation step, ultimately leading to the proposal of a competitive charge transfer mechanism. Additionally, this exploration has led to the screening of five BCN-type structures (P@T1-C1, S@T1-B1, O@T1-B1, P@T1-B1C2, and P@T1-B1C3) with promising nitrogen reduction reaction (NRR) performances. The BCN structure (S@T1-B1) exhibited the lowest NRR overpotential reaching -0.2 V, which is associated with the proposed charge competition mechanism. Furthermore, the investigation delves into the key step hydrogenation mechanism, descriptors, and volcano diagrams of the conformational relationships. In addition, the proposed doping strategy endows the 2D-BCN with more sensitivity toward the solar spectrum, suggesting its application as a potential photocatalyst. Overall, this study establishes a strong foundation for the advancement of nonmetal-atom-doped BCN nanosheets in nitrogen reduction applications, while also providing a versatile framework for fine-tuning edge-site activity within the broader context of two-dimensional photo/electrocatalytic materials.

7.
J Biochem Mol Toxicol ; 38(1): e23550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37815028

RESUMEN

Uric acid, an oxidation end-product of purine metabolism, is reportedly to be a risk factor for kidney injury. However, its underlying mechanism is still a mystery. This study aimed to reveal the detailed roles of uric acid in inducing kidney injury and the possible mechanisms. Injection of rats with uric acid significantly increased tubular injury score, and levels of blood urea nitrogen, serum creatinine, and urine kidney injury molecule-1. Uric acid increased the expression of collagen I, alpha-smooth muscle actin, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. Kyoto Encyclopedia of Genes and Genomes analysis result showed the IL-17 signaling pathway as the most significantly enriched pathway involved in hyperuricemia-related kidney injury. Long-term injection of uric acid induced significant production of IL-17 and recruitment of Th17 cells. Treating rats with the anti-IL-17 mAb attenuated uric acid-induced kidney injury, accompanied by the inactivation of nuclear factor-κB (NF-κB). In conclusion, uric acid was confirmed to be a risk factor for kidney injury via inducing IL-17 expression. Neutralization of IL-17 using the specific mAb relieved uric acid-induced kidney injury via inhibition of NF-κB signaling.


Asunto(s)
FN-kappa B , Ácido Úrico , Ratas , Animales , Ácido Úrico/metabolismo , FN-kappa B/metabolismo , Interleucina-17 , Riñón/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
8.
RMD Open ; 9(4)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37848267

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disease associated with excessive mechanical loading. The aim here was to elucidate whether different subpopulations of chondrocytes exhibit distinct phenotypes in response to variations in loading conditions. Furthermore, we seek to investigate the transcriptional switches and cell crosstalk among these chondrocytes subsets. METHODS: Proteomic analysis was performed on cartilage tissues isolated from weight-bearing and non-weight-bearing regions. Additionally, single-cell RNA sequencing was employed to identify different subsets of chondrocytes. For disease-specific cells, in vitro differentiation induction was performed, and their presence was confirmed in human cartilage tissue sections using immunofluorescence. The molecular mechanisms underlying transcriptional changes in these cells were analysed through whole-transcriptome sequencing. RESULTS: In the weight-bearing regions of OA cartilage tissue, a subpopulation of chondrocytes called OA hypertrophic chondrocytes (OAHCs) expressing the marker genes SLC39A14 and COL10A1 are present. These cells exhibit unique characteristics of active cellular interactions mediated by the TGFß signalling pathway and express OA phenotypes, distinct from hypertrophic chondrocytes in healthy cartilage. OAHCs are mainly distributed in the superficial region of damaged cartilage in human OA tissue, and on TGFß stimulation, exhibit activation of transcriptional expression of iron metabolism-related genes, along with enrichment of associated pathways. CONCLUSION: This study identified and validated the existence of a subset of OAHCs in the weight-bearing area of OA cartilage tissue. Our findings provide a theoretical basis for targeting OAHCs to slow down the progression of OA and facilitate the repair of cartilage injuries.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Proteómica , Cartílago Articular/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Fenotipo
9.
J Colloid Interface Sci ; 652(Pt B): 1908-1916, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690298

RESUMEN

TiO2 photocatalysts are of great interest in the fields of environmental purification, new energy and so on, because of their non-toxicity, high stability, high redox ability and low cost. However, the photogenerated carriers are severely recombined, which limits the application of TiO2 photocatalysts. Herein, S-scheme Cu3P/TiO2 heterojunction composites were successfully synthesized by a simple and efficient microwave hydrothermal method, and the results show that the hydrogen production rate of Cu3P/TiO2 is 5.83 mmol∙g-1∙h-1 under simulated sunlight irradiation, which is 7.3 and 83.3 times higher than that of pure TiO2 and Cu3P, respectively. This excellent performance is derived from the internal electric field (IEF) and energy band bending generated by the S-scheme heterojunction formed between Cu3P and TiO2. The density functional theory (DFT) calculation indicates that the Cu3P possess smaller work function and more negative conduction band (CB) position than that of TiO2, which is very conducive to greatly improve the H+ reduction ability and hydrogen production performance. This work provides a new idea for the reveal of electron transfer paths and active sites in S-scheme heterojunctions and deepens the mechanism understanding.

10.
Small ; 19(49): e2303974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590380

RESUMEN

Exploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large-scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs /NiTe-Ns). The as-prepared PtNs /NiTe-Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm-2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe-Ns subtly modulates the electronic redistribution at their interface, improves the charge-transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs /NiTe-Ns promotes the sluggish water-dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs /NiTe-Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

11.
Small ; 19(42): e2302429, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433972

RESUMEN

Single-atom (SA) catalysts (SACs) have demonstrated outstanding catalytic performances toward plenty of relevant electrochemical reactions. Nevertheless, controlling the coordination microenvironment of catalytically active SAs to further enhance their catalytic oerformences has remained elusive up to now. Herein, a systematic investigation of 20 transition metal atoms that are coordinated with 20 different microenvironments in a boroncarbon-nitride monolayer (BCN) is conducted using high-throughput density functional theory calculations. The experimentally synthesized ternary BCN monolayer contains carbon, nitrogen, and boron atoms in its 2D network, thus providing a lot of new coordination environments than those of the current Cx Ny nanoplatforms. By exploring the structural/electrochemical stability, catalytic activity, selectivity, and electronic properties of 400 (20 × 20) TM-BCN moieties, it is discovered that specific SA coordination environments can achieve superior stability and selectivity for different electrocatalytic reactions. Moreover, a universal descriptor to accelerate the experimental process toward the synthesis of BCN-SACs is reported. These findings not only provide useful guidance for the synthesis of efficient multifunctional BCN-SACs but also will immediately benefit researchers by levering up their understanding of the mechanistic effects of SA coordination microenvironments on electrocatalytic reactions.

12.
Angew Chem Int Ed Engl ; 62(43): e202306103, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37490318

RESUMEN

The identity of alkali metal cations in the electrolyte of electrocatalysis systems has been recently introduced as a crucial factor to tailor the kinetics and Faradaic efficiency of many electrocatalytic reactions. In this Minireview, we have summarized the recent advances in the molecular-level understanding of cation effects on relevant electrocatalytic processes such as hydrogen evolution (HER), oxygen evolution (OER), and CO2 electroreduction (CO2 RR) reactions. The discussion covers the effects of electrolyte cations on interfacial electric fields, structural organization of interfacial water molecules, blocking the catalytic active sites, stabilization or destabilization of intermediates, and interfacial pHs. These cation-induced interfacial phenomena have been reported to impact the performance (activity, selectivity, and stability) of electrochemical reactions collaboratively or independently. We describe that although there is almost a general agreement on the relationship between the size of alkali cations and the activities of HER, OER, and CO2 RR, however, the mechanism by which the performance of these electrocatalytic reactions is influenced by alkali metal cations is still in debate.

13.
Gene ; 852: 147063, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36427677

RESUMEN

Osteoarthritis (OA) is the most common joint disease. Previous studies were focused on general functions of chondrocyte population in OA without elucidating the existence of chondrocyte subpopulations. To investigate the heterogeneity of chondrocyte, here we conducted detailed analysis on the single-cell sequencing data of cartilage cells from OA patients. After quality control, unsupervised K-mean clustering identified seven different subpopulations of chondrocytes in OA. Those subpopulations of chondrocytes were nominated based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis: stress-metabolizing chondrocytes (cluster 1), rhythmic chondrocytes (cluster 2), apoptotic chondrocytes (cluster 3), matrix-synthesis-related chondrocytes (cluster 4), developmental chondrocytes (cluster 5), protein-synthesis-related chondrocytes (cluster 6 and 8), and osteogenesis chondrocytes (cluster 7). We further noticed that the stress-metabolizing chondrocytes (cluster 1) were dominant in early stages of cartilage damage with increased metabolic levels inhibiting cartilage tissue degeneration, while the matrix-synthesis-related chondrocytes (cluster 4) were mainly existed in the late stages of cartilage damage which reorganized collagen fibers with type III collagen disrupting the extracellular matrix and further cartilage damages. Besides, we identified genes NFKBIA and TUBB2B as potential markers for the stress-metabolizing chondrocytes and the matrix synthesis related chondrocytes, respectively. Our study identifies different chondrocyte subpopulations in OA, and highlights the potential different functions of chondrocyte subpopulations in the early versus late stages of cartilage damage.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo
14.
Neurosci Lett ; 785: 136787, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820551

RESUMEN

The NLRP3-mediated pyroptosis, which could affect inflammation response, plays a key role in the development of depression. Acupuncture has been shown to be an effective treatment for depression. In this study, we aimed to determine whether acupuncture could confer antidepressant activity via decreasing NLRP3-mediated pyroptosis by reducing inflammation. Here, depression model of rats was induced by chronic unpredictable mild stress (CUMS) for 4 weeks. Acupuncture group was subjected to acupuncture at the Shangxing (GV23) and Fengfu (GV16) acupoints for 20 min every other day (a total of 14 times). Fluoxetine group was administered with fluoxetine (2.1 mg/kg with the concentration of 0.21 mg/mL) by oral gavage (1 mL/100 g) once a day for 28 days. Rats' depression-like phenotypes were reflected with behavioral tests and biological detection methods. Results showed that acupuncture significantly improved the depression-like behavior of CUMS rat, suppressed the expressions of NLRP3, ASC, caspase-1, GSDMD, IL-1ß, IL-18, HMGB1, IFN-γ, IL-6 and TNF-α in the serum and hippocampus, restored the %area of microglia, astrocytes and neuronal cells in the hippocampus. These indicate that acupuncture can prevent CUMS-induced depression-like behaviors by reducing NLRP3-mediated pyroptosis and inflammation.


Asunto(s)
Terapia por Acupuntura , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Depresión/metabolismo , Depresión/terapia , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Inflamasomas/metabolismo , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/terapia
15.
Rev Sci Instrum ; 93(2): 024706, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232139

RESUMEN

Test fixtures with high power capacity and an impedance matching network are generally chosen for measurements of high-power gallium nitride high electron mobility transistors. To make interconnection of the test fixtures and devices under test, wire bonding is an effective assembly method. Bonding wires become dominant parasitic elements, especially in the S parameter measurement and loadpull measurement, which should be taken into account and accurately de-embedded for device measurements and modeling. In this paper, test fixtures and through-reflect-line calibration kits are designed to achieve the S parameter measurements of the bonding wire with a vector network analyzer. Equivalent inductances of the bonding wire can be obtained with the electromagnetic simulation model and compact circuit model proposed based on the test fixture. The good agreement of the equivalent inductances extracted with the test fixture and models verified that the way to characterize bonding wire interconnection is effective and accurate. Cree's CGHV1J006D is chosen to take the S parameter measurement for proving the accurate model of the bonding wire. Finally, the equivalent inductance of the 2 mm gate-width transistor is obtained with the electromagnetic model. The drain impedance is accurately calculated after the loadpull measurement with bonding wire effects de-embedded, which matches the loadline theory.

16.
Chem Soc Rev ; 51(3): 812-828, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35022644

RESUMEN

Low dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CO2RR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.

17.
ACS Appl Mater Interfaces ; 14(3): 3919-3929, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014264

RESUMEN

The design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal-organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO2 nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO2 nanohybrids. X-ray photoelectron spectroscopy (XPS) and theoretical studies revealed the key role of the synergistic couple effect of boron (B) and nitrogen (N) in interfacial electronic polarization. The BCN/ZrO2 nanohybrid showed excellent bifunctional electrocatalytic activity, delivering an overpotential (η10) of 301 mV to reach a current density of 10 mA-cm-2 for the OER process and a half-wave potential (E1/2) of 0.85 V vs reversible hydrogen electrode (RHE) for the ORR process, which are comparable to the state-of-the-art LD nanohybrids. Furthermore, BCN/ZrO2 also showed competitive performances for water-splitting and zinc-air battery devices. This work establishes a new route to fabricate highly efficient multifunctional electrocatalysts by tuning the electronic polarization properties of 0D-2D electrochemical interfaces.

18.
Drug Dev Res ; 83(4): 940-951, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35088417

RESUMEN

Interferon regulatory factor (IRF) 2 plays an important role in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). In this study, we explored the effects of IRF2 on apoptosis, inflammation, and oxidative stress in AKI C57BL/6 male mouse model and HEK293 cells following LPS treatment. To determine the effect of IRF2, short hairpin RNAs in mice and small interfering RNAs in cells were used to knockdown IRF2 expression. IRF2 expression, apoptosis, and severity of inflammatory and oxidative stress in mice and cells were measured. IRF2 levels were upregulated in LPS-treated mice and cells. IRF2 knockdown suppressed the levels of creatinine, blood urea nitrogen, and kidney injury molecule 1 and decreased the renal injury score in mice. Furthermore, IRF2 knockdown inhibited apoptosis and decreased the levels of inflammatory, reactive oxygen species (ROS), and malondialdehyde (MDA), but increased superoxide dismutase (SOD) levels in mice and cells. Furthermore, we found that the Janus kinase (JAK)/ signal transducer and activator of transcription pathway activated by LPS was inhibited by knockdown of IRF2, and enhanced by IRF2 overexpression. IRF2 overexpression increased cell apoptosis, inflammation, and ROS and MDA levels, and decreased SOD levels. However, the effect of IRF2 overexpression was reversed by the JAK inhibitor tofacitinib. Knockdown of IRF2 reduced LPS-induced renal tissue injury in vivo and in vitro through anti-inflammatory and antioxidant stress effects.


Asunto(s)
Lesión Renal Aguda , Factor 2 Regulador del Interferón , Estrés Oxidativo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Animales , Antioxidantes/metabolismo , Apoptosis , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Factor 2 Regulador del Interferón/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
19.
Small ; 18(12): e2106091, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34897990

RESUMEN

Atomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized. Furthermore, the current experimental synthetic strategies and accessible characterization techniques for these kinds of atomic catalysts, are also discussed. Finally, the crucial challenges in both theoretical and experimental aspects, as well as the future prospects of HDACs for energy-related applications are provided. It is believed that this review will inspire the rational design and synthesis of the new generation of highly effective HDACs.

20.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947523

RESUMEN

Generating clean and sustainable hydrogen from water splitting processes represent a practical alternative to solve the energy crisis. Ultrathin two-dimensional materials exhibit attractive properties as catalysts for hydrogen production owing to their large surface-to-volume ratios and effective chemisorption sites. However, the catalytically inactive surfaces of the transition metal dichalcogenides (TMD) possess merely small areas of active chemical sites on the edge, thus decreasing their possibilities for practical applications. Here, we propose a new class of out-of-plane deformed TMD (cTMD) monolayer to anchor transition metal atoms for the activation of the inert surface. The calculated adsorption energy of metals (e.g., Pt) on curved MoS2 (cMoS2) can be greatly decreased by 72% via adding external compressions, compared to the basal plane. The enlarged diffusion barrier energy indicates that cMoS2 with an enhanced fixation of metals could be a potential candidate as a single atom catalyst (SAC). We made a well-rounded assessment of the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), which are two key processes in water splitting. The optimized Gibbs free energy of 0.02 for HER and low overpotential of 0.40 V for OER can be achieved when the proper compression and supported metals are selected. Our computational results provide inspiration and guidance towards the experimental design of TMD-based SACs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA