Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 38(1): 2251712, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37664987

RESUMEN

A series of pleuromutilin analogs containing substituted benzoxazole were designed, synthesised, and assessed for their antibacterial activity both in vivo and in vitro. The MIC of the synthesised derivatives was initially assessed using the broth dilution method against four strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3 and S. aureus 144). Most of the synthesised derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). Compounds 50 and 57 exhibited the most effective antibacterial effect against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed that compounds 50 and 57 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 50 was evaluated further using a murine thigh model infected with MRSA (-1.24 log10CFU/mL). Compound 50 exhibited superior antibacterial efficacy to tiamulin. It was also found that compound 50 did not display significant inhibitory effect on the proliferation of RAW 264.7 cells. Molecular docking study revealed that compound 50 can effectively bind to the active site of the 50S ribosome (the binding free energy -7.50 kcal/mol).


Asunto(s)
Antibacterianos , Staphylococcus aureus , Animales , Ratones , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Benzoxazoles/farmacología , Pleuromutilinas
2.
Drug Dev Res ; 84(7): 1437-1452, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37534779

RESUMEN

A series of pleuromutilin derivatives containing benzimidazole were designed, synthesized, and evaluated for their antibacterial activities against Methicillin-resistant Staphylococcus aureus (MRSA) in this study. The in vitro antibacterial activities of the synthesized derivatives against four strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144, and S. aureus AD3) were determined by the broth dilution method. Among these derivatives, compound 58 exhibited superior in vitro antibacterial effect against MRSA (minimal inhibitory concentration [MIC] = 0.0625 µg/mL) than tiamulin (MIC = 0.5 µg/mL). Compound 58 possessed a faster bactericidal kinetic and a longer post-antibiotic effect time against MRSA than tiamulin. Meanwhile, at 8 µg/mL concentration, compound 58 did not display obviously cytotoxic effect on the RAW 264.7 cells. In addition, compound 58 (-2.04 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (-1.02 log10 CFU/mL) in reducing MRSA load in mice thigh infection model. In molecular docking study, compound 58 can successfully attach to the 50S ribosomal active site (the binding free energy is -8.11 kcal/mol). Therefore, compound 58 was a potential antibacterial candidate for combating MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Bencimidazoles/farmacología , Pleuromutilinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...