Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 455: 139903, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38824733

RESUMEN

The effects of oat ß-glucan (OG) combined with ultrasound-assisted treatment on thermal aggregation behavior of silver carp myofibrillar protein (MP) under low salt concentration were investigated. The particle size and turbidity of MP were increased to higher levels by OG participation or ultrasound treatment during the two-stage heating. Both OG and ultrasonic treatment promoted the unfolding of MP structure, evidenced by the gradual decrease of α-helix content and fluorescence intensity, as well as the increase of ß-sheet content, surface hydrophobicity and sulfhydryl content. Compared to solely OG or ultrasonic treatment, the combination of OG and ultrasound further promoted the unfolding of MP and more sulfhydryl groups were exposed in the pre-heating stage, which was conducive to strengthen the chemical forces between MP molecules. Additionally, AFM analysis revealed that the apparent morphology of the OG combined with ultrasonic treated group exhibited a smoother surface and a more uniform distribution of aggregates.

2.
Front Plant Sci ; 15: 1395628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817929

RESUMEN

Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.

5.
J Fungi (Basel) ; 9(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38132766

RESUMEN

Microorganisms are an important component of global biodiversity and play an important role in plant growth and development and the protection of host plants from various biotic and abiotic stresses. However, little is known about the identities and communities of endophytic fungi inhabiting cultivated medicinal plants in the farmland ecosystem. The diversity and community composition of the endophytic fungi of cultivated medicinal plants in different hosts, tissue niches, and seasonal effects in the farmland of Northern China were examined using the next-generation sequencing technique. In addition, the ecological functions of the endophytic fungal communities were investigated by combining the sequence classification information and fungal taxonomic function annotation. A total of 1025 operational taxonomic units (OTUs) of endophytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Pleosporales. Host factors (species identities and tissue niches) and season had significant effects on the community composition of endophytic fungi, and endophytic fungi assembly was shaped more strongly by host than by season. In summer, endophytic fungal diversity was higher in the root than in the leaf, whereas opposite trends were observed in winter. Network analysis showed that network connectivity was more complex in the leaf than in the root, and the interspecific relationship between endophytic fungal OTUs in the network structure was mainly positive rather than negative. The functional predications of fungi revealed that the pathotrophic types of endophytic fungi decreased and the saprotrophic types increased from summer to winter in the root, while both pathotrophic and saprotrophic types of endophytic fungi increased in the leaf. This study improves our understanding of the community composition and ecological distribution of endophytic fungi inhabiting scattered niches in the farmland ecosystem. In addition, the study provides insight into the biodiversity assessment and management of cultivated medicinal plants.

6.
Ultrason Sonochem ; 95: 106406, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37088028

RESUMEN

The effect of oat ß-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Productos Pesqueros/análisis , Geles/química , Agua
7.
Microbiol Res ; 269: 127314, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36724560

RESUMEN

Microorganisms are an important component of global biodiversity. However, they are vulnerable to hyper-arid climates in desert regions. Xerophytes are desert vegetation with unique biodiversity. However, little is known about the identities and communities of phyllosphere epiphytic microorganisms inhabiting the xerophyte leaf surface in the hot and dry environment. The diversity and community composition of phyllosphere epiphytes on different desert plants in Gansu, China, was investigated using the next-generation sequencing technique, revealing the diversity and community composition of the phyllosphere epiphytic bacteria associated with desert xerophytes. In addition, the ecological functions of the bacterial communities were investigated by combining the sequence classification information and prokaryotic taxonomic function annotation (FAPROTAX). This study determined the phyllosphere bacterial community composition, microbial interactions, and their functions. Despite harsh environments in the arid desert, we found that there are still diverse epiphytic bacteria on the leaves of desert plants. The bacterial communities mainly included Actinobacteria (52.79%), Firmicutes (31.62%), and Proteobacteria (12.20%). Further comparisons revealed different microbial communities, including Firmicutes at the phylum and Paenibacillaceae at the family level, in the phyllosphere among different plants, suggesting that the host plants had strong filter effects on bacteria. Co-occurrence network analysis revealed positive relationships were dominant among different bacterial taxa. The abundance of Actinobacteria and Proteobacteria was positively correlated, demonstrating their mutual relationship. On the other hand, the abundance of Firmicutes was negatively correlated, which suggested that they inhibit the growth of other bacterial taxa. FAPROTAX prediction revealed that chemoheterotrophy (accounting for 39.02% of the community) and aerobic chemoheterotrophy (37.01%) were the main functions of the leaf epiphytic bacteria on desert plants. This study improves our understanding of the community composition and ecological functions of plant-associated microbial communities inhabiting scattered niches in the desert ecosystem. In addition, the study provides insight into the biodiversity assessment in the desert region.


Asunto(s)
Biodiversidad , Microbiota , Plantas/microbiología , Bacterias , Firmicutes , Proteobacteria/genética , Hojas de la Planta/microbiología
8.
Microbiol Res ; 269: 127315, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738491

RESUMEN

Assessment changes of soil microbial community structure and function is important in understanding the response to desert ecosystem management. In present study, variations of soil microbial community and edaphic factors associated with five desert shrubs were determined in Anxi extremely arid desert in Northwest China in growing (summer), deciduous (autumn), and snowfall (winter) seasons. For that, the microbial composition and catabolic metabolism were examined using methods of phospholipid fatty acid (PLFA) and Biolog EcoPlate, respectively. Regardless of plant species and seasonal patterns, the microbial community was mostly dominated by gram-negative bacteria (GN); and the carbohydrates, amino acids and polymers were the main carbon sources for desert microbial metabolism. Microbial biomass and metabolic levels were significantly higher in both summer and winter than those of autumn. There was no correlation between soil microbial community and carbon utilization in winter; but GN was positively correlated with metabolism of amines carbon sources in summer, while fungal community presented the strongest correlation with suites of carbon sources' metabolic levels in autumn, indicating the uncoupled relationship between microbial community and function in desert ecosystems. Desert shrubs significantly influenced the composition of soil microbial community, whereas the variation of microbial catabolic metabolism was most attributed to seasonality. Nevertheless, the effects of both plant species (21.3 %) and climate variation (84.9 %) interacted with soil properties, indicating the seasonality of soil nutrients predominately determined the changes in composition and metabolism of desert microbes. Both the comprehensive seasonal level and the intra-seasonal paired correlation analysis proved that phosphorus was the key factor in determining microbial community composition, while ammonia and nitrate nitrogen were more correlated to microbial functional metabolism. Additionally, soil moisture and organic carbon in desert environment also induced the shifts in ratio of fungi and bacterial communities. We conclude that the seasonal patterns of soil microbial community and metabolic function in extremely arid desert are predictable, and mainly influenced by specific soil factors driven by desert shrubs and climate factors. These findings will provide a basis for evaluating the management of soil resources and microbial function in desert environments.


Asunto(s)
Ecosistema , Microbiología del Suelo , Estaciones del Año , Suelo/química , Carbono/metabolismo
9.
J Sci Food Agric ; 103(7): 3367-3375, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840432

RESUMEN

BACKGROUND: Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat ß-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS: An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to ß-sheet and ß-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION: The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Conformación Proteica , Agua , Productos Pesqueros/análisis
10.
Sci Total Environ ; 856(Pt 1): 159109, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181806

RESUMEN

Understanding the processes determining the composition of alluvial pollen assemblages and its relationship with watershed vegetation is a prerequisite for alluvial palynological study. Palynological analysis of a total of 45 river water samples collected from the middle reaches of the Yellow River and its major tributaries, identifies the distribution patterns, possible sources of pollen and relationship with the catchment vegetation. The results reveal that the pollen assemblages in the middle reaches of the Yellow River is dominated by herbaceous taxa, and the pollen is mainly derived from fluvial sources. Higher concentrations of the pollen tend to occur in the southern part of the study area. The Luo River is the main source of tree pollen in the Wei River Basin, while the Sanchuan River and Xinshui River are the main sources of tree pollen in the mainstream of the Yellow River. Herbaceous pollen mainly originates from the flood plain, and from channel bars and point bars, and there is no obvious relationship between herbaceous pollen and tributary inputs. The relative proportions of the various land use classes in the middle reaches of the Yellow River can be ordered as follows: grassland (GL) > cultivated land (CL) > forest (FO) > shrubland (SH) > water (WA). The herbaceous pollen of the Huangfuchuan River and Kuye River are closely related to the coverage of GL; cereal pollen is not fully representative of the CL coverage in the watershed; and the pollen of woody plants is extremely over-represented compared to the coverage of FO and SH in the watershed. Our results provide basic information about the sources of fluvial pollen and its indicative significance in the lower Yellow River and they are also potentially applicable to other major river basins.


Asunto(s)
Agua Dulce , Ríos , China , Polen , Agua , Monitoreo del Ambiente
11.
Front Plant Sci ; 14: 1328586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239215

RESUMEN

Introduction: The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods: In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results: The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion: This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.

12.
Front Plant Sci ; 13: 933738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160950

RESUMEN

Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.

13.
J Fungi (Basel) ; 8(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36135646

RESUMEN

Drought is a major abiotic stress factor affecting plant growth and production, while utilizing beneficial endophytic fungi is one of the most promising strategies for enhancing plant growth and drought tolerance. In the current study, a pot experiment was conducted to investigate the beneficial effects of dark septate endophyte (DSE) (Macrophomina pseudophaseolina, Paraphoma radicina) and Trichoderma (Trichoderma afroharzianum, Trichoderma longibrachiatum) inoculum on Astragalus mongholicus grown in sterile soil under drought stress, alone, or in combination. The addition of Trichoderma enhanced the DSE colonization in roots regardless of the water condition. Under well-watered conditions, M. pseudophaseolina inoculation significantly enhanced the biomass and root length of A. mongholicus. The two DSE and Trichoderma inoculum significantly improved calycosin-7-O-ß-D-glucoside content. However, M. pseudophaseolina + T. afroharzianum inoculation better promoted root growth, whereas co-inoculation had higher active ingredient contents compared with single inoculation, except for P. radicina + T. afroharzianum. Under drought stress, DSE and Trichoderma inoculum significantly improved root biomass, root length, calycosin-7-O-ß-D-glucoside content, and activities of nitrate reductase and soil urease. P. radicina + T. afroharzianum and P. radicina + T. longibrachiatum better increased root length, and all combinations of DSE and Trichoderma had a greater impact on the increase in formononetin content compared with the single treatments. Additionally, Trichoderma relies on antioxidant enzymes, growth hormones, and the redox system (ascorbic acid−glutathione) to resist drought, while DSE strains have an additional osmotic regulation system in addition to the drought resistance function possessed by Trichoderma, and the effect of co-inoculation (especially M. pseudophaseolina + T. longibrachiatum and P. radicina + T. afroharzianum) on plant physiological parameters was greater than that of single inoculation. This study provides a new research direction for the effects of DSE and Trichoderma on medicinal plant cultivated in dryland.

14.
J Fungi (Basel) ; 8(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887485

RESUMEN

Dark septate endophytes (DSEs) usually colonize plant roots, especially in stress environments. However, their relationship with plants ranges from beneficial to harmful and has remained largely uncharacterized. In the present study, 14 DSE species grouped into 11 genera were isolated from the roots of a desert plant, Artemisia ordosica, which is widely distributed in northwest China. Three dominant DSE species-Paraphoma chrysanthemicola (Pc), Alternaria chartarum (Ac), and Acrocalymma vagum (Av)-were selected and tested for their resistance to drought in vitro. Furthermore, we characterized the responses of A. ordosica under drought conditions in relation to the presence of these DSEs following inoculation. The results showed that all three strains grew well under in vitro drought stress, and the biomass of Ac and Av was significantly higher than that of the unstressed control. The effects of DSE inoculation on the growth of A. ordosica under drought stress varied according to the different DSE species but were generally beneficial. Under drought stress, Av and Pc promoted plant growth, antioxidant enzyme activity, and root development of the hosts. The Ac strain conferred obvious positive effects on the antioxidant enzyme activity of the hosts. In general, Av and Pc demonstrated better application potential for improving the drought resistance of A. ordosica.

15.
Ultrason Sonochem ; 83: 105942, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35131561

RESUMEN

The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.


Asunto(s)
Carpas , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Calefacción , Agua
16.
Ultrason Sonochem ; 82: 105915, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35042162

RESUMEN

This study determined the influence of diacylglycerol (DAG) pre-emulsion on the gel properties and microstructure of golden thread surimi gels. DAG emulsion stabilized using sodium caseinate was pre-emulsified through ultrasound. The average particle size of DAG pre-emulsion decreased from 1324.15 nm to 41.19 nm, with notable improvements in apparent viscosity and storage stability. The surimi gels with different amounts (0%, 1%, 3%, 5%, and 7% w/w) of DAG pre-emulsion were prepared under heat induction. The whiteness of the composite gels markedly increased with the incorporation of DAG pre-emulsion. The peak T22 value of immobilized water, the gel strength, and water-holding capacity increased gradually, but it slightly decreased with the addition of 7% pre-emulsion. The curve of G' and G″ kept climbing as the concentration of pre-emulsion, and the microstructure of the gel network tended to become denser and more orderly. Principal component analysis (PCA) of electronic nose results showed that the surimi gels containing pre-emulsion could be clearly distinguished from the control group. In conclusion, the addition of 5% DAG pre-emulsion to surimi not only improved gel properties to the highest extent but also be compensated for lipid loss during the rinsing of surimi.


Asunto(s)
Diglicéridos/química , Emulsiones , Productos Pesqueros/análisis , Geles , Ultrasonido , Agua
17.
Mitochondrial DNA B Resour ; 6(10): 2999-3000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568561

RESUMEN

The complete mitogenome of Cochylidia moguntiana (Rössler, 1864) was sequenced and analyzed. The genome is 15,433 bp long with a high A + T content (80.6%), and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a noncoding control region. A phylogenetic analysis of 18 tortricid species for which mitogenes are available showed strong support for the monophyly of Tortricinae.

18.
J Fungi (Basel) ; 7(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356957

RESUMEN

Despite desert ecosystem being crucial to our understanding of natural geography, species evolution and global climate change, there is limited information on the dynamics of their composition and the diversity of endophytic fungi communities driven by plant identity and organ differentiation. Here, an extensive investigation of endophytic fungal microbiome in root, stem, and leaf organs associated with five xerophyte shrubs in an extremely arid desert, Northwest China, were examined. The fungal community dominated by Dothideomycetes and Pleosporales. Shrub species strongly drive the niche-based processes of endophytic fungi across the root, stem and leaf compartments. The diversity and composition of endophytic fungi in stem showed higher variability among plant species than leaf and root. The fungal communities in root libraries were more diverse and exhibited a remarkable differentiation of community composition. We further demonstrated the significant host preferences and tissue specificity of desert endophytic fungi, and unique specific taxa were also observed. The co-occurrence network revealed the coexistence of fungal endophytes in arid desert, and the root fungal network harbored the highest interspecies connectivity. Members of Pleosporales were the most common keystone species in the root fungal network. This is the first report of mycobiota in both plant species and organ differentiation in an extremely arid desert ecosystem.

19.
Sci Total Environ ; 781: 146773, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33798892

RESUMEN

The potential for negative effects of heavy metal remediation on the ecological environment of soil is an issue of widespread concern. As a basic index of soil moisture and fertility retention capacity, the response of the physical properties of soil to immobilization remediation is therefore extremely important and is the main focus of this study on remediated farmland in the mining area of Tangshi village, Henan province, China. Accordingly, topsoil samples and ring knife samples were collected from five separate farmland plots, four of which had been remediated with the respective soil amendments of 1) nano silica; 2) silicate, phosphate and clay minerals; 3) biochar and organic fertilizer; and 4) biochar and phosphate; whilst for experimental control purposes the 5th plot had no remediation measures. The physical properties of particle composition, bulk density, porosity and aggregate were subsequently determined. The results show that nano silica tends to refine the soil, mainly by significantly reducing the content of sand and increasing the content of silt and clay, but did not change the soil texture type. Furthermore, nano silica can promote the formation of soil macro-aggregates and reduce the content of micro-aggregates. However, the other three amendment compositions show no significant effect on soil particle composition and aggregate content. On the whole, the amendments of the four remediation plots can significantly reduce soil bulk density and increase porosity, thus facilitating soil changes that are more beneficial for crop growth. The results, therefore, go some way into alleviating the concerns surrounding heavy metal remediation and damage to the ecological environment of soil.

20.
Front Plant Sci ; 10: 903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354772

RESUMEN

Hedysarum scoparium, a species characterized by rapid growth and high drought resistance, has been used widely for vegetative restoration of arid regions in Northwest China that are prone to desertification. Desert soil is typically deficient in available water and the alleviation of drought stress to host plants by endophytes could be an efficient strategy to increase the success of desert restoration. With the objective to seek more beneficial symbionts that can be used in the revegetation strategies, we addressed the question whether H. scoparium can benefit from inoculation by dark septate endophytes (DSEs) isolated from other desert plants. We investigated the influences of four non-host DSE strains (Phialophora sp., Knufia sp., Leptosphaeria sp., and Embellisia chlamydospora) isolated from other desert plants on the performance of H. scoparium under different soil water conditions. Differences in plant performance, such as plant growth, antioxidant enzyme activities, carbon, nitrogen, and phosphorous concentration under all the treatments, were examined. Four DSE strains could colonize the roots of H. scoparium successfully, and they established a positive symbiosis with the host plants depending on DSE species and water availability. The greatest benefits of DSE inoculation occurred in water stress treatment. Specifically, Phialophora sp. and Leptosphaeria sp. improved the root biomass, total biomass, nutrient concentration, and antioxidant enzyme activities of host plants under water deficit conditions. These data contribute to the understanding of the ecological function of DSE fungi in drylands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA