Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Phys Rev E ; 109(6-1): 064902, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020947

RESUMEN

The dense active matter exhibits characteristics reminiscent of traditional glassy phenomena, yet the role of rotational inertia in glass dynamics remains elusive. In this study, we investigate the glass dynamics of chiral active particles influenced by rotational inertia. Rotational inertia endows exponential memory to particle orientation, restricting its alteration and amplifying the effective persistence time. At lower spinning frequencies, the diffusion coefficient exhibits a peak function relative to rotational inertia for shorter persistence times, while it steadily increases with rotational inertia for longer persistence times. In the realm of high-frequency spinning, the impact of rotational inertia on diffusion behavior becomes more pronounced, resulting in a nonmonotonic and intricate relationship between the diffusion coefficient and rotational inertia. Consequently, the introduction of rotational inertia significantly alters the glassy dynamics of chiral active particles, allowing for the control over transitions between fluid and glassy states by modulating rotational inertia. Moreover, our findings indicate that at a specific spinning temperature, there exists an optimal spinning frequency at which the diffusion coefficient attains its maximum value.

2.
Aquat Toxicol ; 273: 107015, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38996482

RESUMEN

Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.

3.
Insect Sci ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880966

RESUMEN

The tetraspanin gene family encodes cell-surface proteins that span the membrane 4 times and play critical roles in a wide range of biological processes across numerous organisms. Recent findings highlight the involvement of a tetraspanin of the lepidopteran pest Helicoverpa armigera in resistance to Bacillus thuringiensis Cry insecticidal proteins, which are extensively used in transgenic crops. Thus, a better understanding of lepidopteran tetraspanins is urgently needed. In the current study, genome scanning in 10 lepidopteran species identified a total of 283 sequences encoding potential tetraspanins. Based on conserved cysteine patterns in the large extracellular loop and their phylogenetic relationships, these tetraspanins were classified into 8 subfamilies (TspA to TspH). Six ancestral introns were identified within lepidopteran tetraspanin genes. Tetraspanins in TspA, TspB, TspC, and TspD subfamilies exhibit highly similar gene organization, while tetraspanins in the remaining 4 subfamilies exhibited variation in intron loss and/or gain during evolution. Analysis of chromosomal distribution revealed a lepidopteran-specific cluster of 10 to 11 tetraspanins, likely formed by tandem duplication events. Selective pressure analysis indicated negative selection across all orthologous groups, with ω values ranging between 0.004 and 0.362. However, positive selection was identified at 18 sites within TspB5, TspC5, TspE3, and TspF10. Furthermore, spatiotemporal expression analysis of H. armigera tetraspanins demonstrated variable expression levels across different developmental stages and tissues, suggesting diverse functions of tetraspanin members in this globally important insect pest. Our findings establish a solid foundation for subsequent functional investigations of tetraspanins in lepidopteran species.

4.
mLife ; 3(1): 74-86, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827515

RESUMEN

Pseudomonas aeruginosa is a ubiquitous and metabolically versatile microorganism naturally found in soil and water. It is also an opportunistic pathogen in plants, insects, animals, and humans. In response to increasing cell density, P. aeruginosa uses two acyl-homoserine lactone (AHL) quorum-sensing (QS) signals (i.e., N-3-oxo-dodecanoyl homoserine lactone [3-oxo-C12-HSL] and N-butanoyl-homoserine lactone [C4-HSL]), which regulate the expression of hundreds of genes. However, how the biosynthesis of these two QS signals is coordinated remains unknown. We studied the regulation of these two QS signals in the rhizosphere strain PA1201. PA1201 sequentially produced 3-oxo-C12-HSL and C4-HSL at the early and late growth stages, respectively. The highest 3-oxo-C12-HSL-dependent elastase activity was observed at the early stage, while the highest C4-HSL-dependent rhamnolipid production was observed at the late stage. The atypical regulator RsaL played a pivotal role in coordinating 3-oxo-C12-HSL and C4-HSL biosynthesis and QS-associated virulence. RsaL repressed lasI transcription by binding the -10 and -35 boxes of the lasI promoter. In contrast, RsaL activated rhlI transcription by binding the region encoding the 5'-untranslated region of the rhlI mRNA. Further, RsaL repressed its own expression by binding a nucleotide motif located in the -35 box of the rsaL promoter. Thus, RsaL acts as a molecular switch that coordinates the sequential biosynthesis of AHL QS signals and differential virulence in PA1201. Finally, C4-HSL activation by RsaL was independent of the Las and Pseudomonas quinolone signal (PQS) QS signaling systems. Therefore, we propose a new model of the QS regulatory network in PA1201, in which RsaL represents a superior player acting at the top of the hierarchy.

5.
Nutrients ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38892496

RESUMEN

The imbalance of gut microbiota is an important factor leading to inflammatory bowel disease (IBD). Diffusible signal factor (DSF) is a novel quorum-sensing signal that regulates bacterial growth, metabolism, pathogenicity, and host immune response. This study aimed to explore the therapeutic effect and underlying mechanisms of DSF in a zebrafish colitis model induced by sodium dextran sulfate (DSS). The results showed that intake of DSF can significantly improve intestinal symptoms in the zebrafish colitis model, including ameliorating the shortening of the intestine, reducing the increase in the goblet cell number, and restoring intestinal pathological damage. DSF inhibited the upregulation of inflammation-related genes and promoted the expression of claudin1 and occludin1 to protect the tightness of intestinal tissue. The gut microbiome analysis demonstrated that DSF treatment helped the gut microbiota of the zebrafish colitis model recover to normal at the phylum and genus levels, especially in terms of pathogenic bacteria; DSF treatment downregulated the relative abundance of Aeromonas hydrophila and Staphylococcus aureus, and it was confirmed in microbiological experiments that DSF could effectively inhibit the colonization and infection of these two pathogens in the intestine. This study suggests that DSF can alleviate colitis by inhibiting the proliferation of intestinal pathogens and inflammatory responses in the intestine. Therefore, DSF has the potential to become a dietary supplement that assists in the antibiotic and nutritional treatment of IBD.


Asunto(s)
Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Percepción de Quorum , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/microbiología , Colitis/tratamiento farmacológico , Percepción de Quorum/efectos de los fármacos , Intestinos/microbiología , Aeromonas hydrophila , Inflamación , Staphylococcus aureus/efectos de los fármacos
6.
Sci Rep ; 14(1): 10942, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740839

RESUMEN

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Asunto(s)
Actinobacteria , Naftacenos , Quinonas , Naftacenos/aislamiento & purificación , Naftacenos/farmacología , Quinonas/aislamiento & purificación , Quinonas/farmacología , Actinobacteria/química , Actinobacteria/clasificación , Actinobacteria/citología , Actinobacteria/aislamiento & purificación , Fertilizantes , Musa/microbiología , Metabolismo Secundario , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Línea Celular Tumoral , Humanos , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología
7.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724505

RESUMEN

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Asunto(s)
Citoplasma , Inhibidor NF-kappaB alfa , FN-kappa B , Proteínas Tirosina Quinasas , Factor de Transcripción ReIA , Animales , Fosforilación , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Factor de Transcripción ReIA/metabolismo , Humanos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , FN-kappa B/metabolismo , Citoplasma/metabolismo , Proteolisis , Núcleo Celular/metabolismo , Replicación Viral , Células HEK293 , Transducción de Señal , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Serina-Treonina Quinasas
8.
Discov Oncol ; 15(1): 143, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704809

RESUMEN

PURPOSE: Pancreatic cancer (PC) is one of the most lethal malignant gastrointestinal tumors (GI) characterized by a poor prognosis. Ferroptosis is an emerging programmed cell death that plays an essential role in the progression of various cancers. Ferroptosis is driven by iron-dependent phospholipid peroxidation and is regulated by mitochondrial activity, lipid peroxidation, and reactive oxygen species (ROS). The function and mechanism of ferroptosis in PC need more research. METHODS: The levels of circRNAs, miRNAs, and mRNAs were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was used for protein detection. CCK8 assays were used to detect cell proliferation. Cell death, lipid peroxidation, ROS, and Fe2+ were detected by indicted kits. Dual-luciferase reporter and RNA pull-down assays were conducted to confirm the interaction between circRNAs, miRNAs, and mRNAs. RESULTS: In this research, we found that circular RNA hsa_circ_0000003(circ_WASF2) was upregulated in pancreatic cancer cells. The silence of circ_WASF2 inhibited cancer proliferation and increased cell death by increasing ferroptosis accompanied by up-regulation of lipid peroxidation, ROS, and Fe2+. Further studies showed that circ_WASF2 could attenuate ferroptosis by targeting miR-634 and the downstream glutathione peroxidase 4 (GPX4). GPX4 has been well-reported as a central factor in ferroptosis. Our research revealed a new pathway for regulating ferroptosis in PC. CONCLUSION: In summary, we have determined that circ_WASF2/miR-634/GPX4 contributed to ferroptosis-induced cell death, and provided a possible therapeutic target in PC.

9.
Angew Chem Int Ed Engl ; 63(25): e202405427, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38603586

RESUMEN

Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.

10.
Cell Death Discov ; 10(1): 171, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600077

RESUMEN

Decidual macrophages (dMϕs) play critical roles in regulation of immune-microhomeostasis at maternal-fetal interface during pregnancy, but the underlying molecular mechanisms are still unclear. In this study, it was found that litter size and fetal weight were significantly reduced, whereas the rate of embryo resorption was increased in miR-3074-5p knock-in (3074-KI) pregnant mice, compared to that of wild-type (WT) pregnant mice. Plasma levels of pro-inflammatory cytokines in 3074-KI pregnant mice were also significantly elevated compared to WT pregnant mice at GD7.5. The quantity of M1-Mϕs in uterine tissues of 3074-KI pregnant mice was significantly increased compared to WT pregnant mice at GD13.5. Estrogen receptor-α (ERα) was validated to be a target of miR-3074-5p. Either miR-3074-5p overexpression or ERα knockdown promoted transcriptional activity of NF-κB/p65, induced M1-polarization and pyroptosis of THP1-derived Mϕs, accompanied with increased intracellular levels of cleaved Caspase-1, cleaved IL-1ß, NLRP3, cleaved GSDMD and ASC aggregation. Furthermore, ERα could not only bind to NLRP3 or ASC directly, but also inhibit the interaction between NLRP3 and ASC. The endometrial miR-3074-5p expression level at the middle secretory stage of repeated implantation failure (RIF) patients was significantly decreased compared to that of control fertile women. These data indicated that miR-3074-5p could promote M1 polarization and pyroptosis of Mϕs via activation of NLRP3 inflammasome by targeting ERα, and the dysregulation of miR-3074-5p expression in dMϕs might damage the embryo implantation and placentation by interfering with inflammatory microenvironment at the maternal-fetal interface during early pregnancy.

11.
JAMA Neurol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683623

RESUMEN

This case report describes hypointensity in the cerebellum and midbrain in a 56-year-old woman with double vision and weakness and ptosis of eyelids.

12.
Support Care Cancer ; 32(4): 264, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564034

RESUMEN

OBJECTIVE: This paper aims to provide an evidence-based summary of the most effective strategies for comprehensive healthcare of chemotherapy-induced peripheral neuropathy (CIPN) in cancer patients. METHOD: Following the "6S" model, relevant evidence on CIPN management was collected from reputable evidence-based resource websites and databases nationally and internationally. The included articles were evaluated for methodological quality, and evidence was extracted using the Australian JBI Evidence-based Health Care Center's literature evaluation standard (2016 edition). RESULTS: A total of 60 articles were included in this study, comprising 2 guidelines, 5 expert consensus statements, and 53 systematic reviews. The findings of these articles were summarized across 7 dimensions, including risk factor screening, assessment, diagnosis, prevention, treatment, management, and health education, resulting in the identification of 42 relevant pieces of evidence. CONCLUSIONS: This study provides a comprehensive synthesis of evidence-based recommendations for managing CIPN in cancer patients, offering guidance for healthcare professionals engaged in clinical practice. However, when implementing these recommendations, it is crucial to consider the individual patient's clinical circumstances, preferences, and expert judgment, ensuring feasibility and applicability in real-world clinical settings.


Asunto(s)
Antineoplásicos , Neoplasias , Enfermedades del Sistema Nervioso Periférico , Humanos , Australia , Atención Integral de Salud , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/terapia , Neoplasias/tratamiento farmacológico , Antineoplásicos/efectos adversos
13.
Cell Death Dis ; 15(4): 239, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561331

RESUMEN

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.


Asunto(s)
Ferroptosis , Glioblastoma , MicroARNs , Humanos , Glioblastoma/genética , Ferroptosis/genética , MicroARNs/genética , ARN Interferente Pequeño , Factores de Transcripción Forkhead/genética , Proliferación Celular/genética , Línea Celular Tumoral
14.
BMC Gastroenterol ; 24(1): 109, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491451

RESUMEN

BACKGROUND: Metabolism dysfunction-associated fatty liver disease (MAFLD), is the most common chronic liver disease. Few MAFLD predictions are simple and accurate. We examined the predictive performance of the albumin-to-glutamyl transpeptidase ratio (AGTR), plasma atherogenicity index (AIP), and serum uric acid to high-density lipoprotein cholesterol ratio (UHR) for MAFLD to design practical, inexpensive, and reliable models. METHODS: The National Health and Nutrition Examination Survey (NHANES) 2007-2016 cycle dataset, which contained 12,654 participants, was filtered and randomly separated into internal validation and training sets. This study examined the relationships of the AGTR and AIP with MAFLD using binary multifactor logistic regression. We then created a MAFLD predictive model using the training dataset and validated the predictive model performance with the 2017-2018 NHANES and internal datasets. RESULTS: In the total population, the predictive ability (AUC) of the AIP, AGTR, UHR, and the combination of all three for MAFLD showed in the following order: 0.749, 0.773, 0.728 and 0.824. Further subgroup analysis showed that the AGTR (AUC1 = 0.796; AUC2 = 0.690) and the combination of the three measures (AUC1 = 0.863; AUC2 = 0.766) better predicted MAFLD in nondiabetic patients. Joint prediction outperformed the individual measures in predicting MAFLD in the subgroups. Additionally, the model better predicted female MAFLD. Adding waist circumference and or BMI to this model improves predictive performance. CONCLUSION: Our study showed that the AGTR, AIP, and UHR had strong MAFLD predictive value, and their combination can increase MAFLD predictive performance. They also performed better in females.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ácido Úrico , Humanos , Femenino , Encuestas Nutricionales , Albúminas , HDL-Colesterol , gamma-Glutamiltransferasa
15.
J Genet Eng Biotechnol ; 22(1): 100338, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494257

RESUMEN

BACKGROUND: Kidney renal clear cell carcinoma (KIRC), with low survival rate, is the most frequent subtype of renal cell carcinoma. Recently, more and more studies indicate that cuproptosis-related genes (CRGs) and long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of many types of cancers. However, the roles of cuproptosis-related lncRNAs (CRlncRNAs) in the KIRC was uncertain. RESULTS: In our study, CRlncRNAs were obtained by coexpression between differentially expressed and prognostic CRGs and differentially expressed and prognostic lncRNAs, and an 8-CRlncRNAs (AC007743.1, AC022915.1, AP005136.4, APCDD1L-DT, HAGLR, LINC02027, MANCR and SMARCA5-AS1) risk model was established according to least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. This risk model could differentiate immune cell infiltration, immune function and gene mutation. CONCLUSIONS: This 8-CRlncRNAs risk model may be promising for the clinical prediction of prognoses, tumor immune, immunotherapy response and chemotherapeutic response in KIRC patients.

17.
Heliyon ; 10(2): e24376, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312674

RESUMEN

Aims: Yin Yang 1 (YY1) is a multifunctional transcription factor that plays an important role in tumour development and progression, while its clinical significance in diffuse large B-cell lymphoma (DLBCL) remains largely unexplored. This study aimed to investigate the expression and clinical implications of YY1 in DLBCL. Methods: YY1 expression in 198 cases of DLBCL was determined using immunohistochemistry. The correlation between YY1 expression and clinicopathological parameters as well as the overall survival (OS) and progression-free survival (PFS) of patients was analyzed. Results: YY1 protein expression was observed in 121 out of 198 (61.1 %) DLBCL cases. YY1 expression was significantly more frequent in cases of the GCB subgroup than in the non-GCB subgroup (P = 0.005). YY1 was positively correlated with the expression of MUM1, BCL6, pAKT and MYC/BCL2 but was negatively associated with the expression of CXCR4. No significant relationships were identified between YY1 and clinical characteristics, including age, sex, stage, localization, and B symptoms. Univariate analysis showed that the OS (P = 0.003) and PFS (P = 0.005) of patients in the YY1-negative group were significantly worse than those in the YY1-positive group. Multivariate analysis indicated that negative YY1 was a risk factor for inferior OS (P < 0.001) and PFS (P = 0.017) independent of the international prognostic index (IPI) score, treatment and Ann Arbor stage. Furthermore, YY1 is more powerful for stratifying DLBCL patients into different risk groups when combined with MYC/BCL2 double-expression (DE) status. Conclusions: YY1 was frequently expressed in DLBCL, especially in those of GCB phenotype and with MYC/BCL2-DE. As an independent prognostic factor, YY1 expression could predict a favourable outcome in DLBCL. In addition, a complex regulatory mechanism might be involved in the interactions between YY1 and MYC, pAKT as well as CXCR4 in DLBCL, which warrants further investigation.

18.
Sci Total Environ ; 920: 170914, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354808

RESUMEN

Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 µg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1ß and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.


Asunto(s)
Toxinas Marinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Femenino , Pez Cebra/metabolismo , Amoníaco/toxicidad , Amoníaco/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Glutámico/metabolismo , Microcistinas/toxicidad , Microcistinas/metabolismo , Inflamación/inducido químicamente , Ácido gamma-Aminobutírico/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-38355915

RESUMEN

AIM: This study aims to utilize machine learning (ML) and logistic regression (LR) models to predict surgical outcomes among patients with traumatic brain injury (TBI) based on admission examination, assisting in making optimal surgical treatment decision for these patients. METHOD: We conducted a retrospective review of patients hospitalized in our department for moderate-to-severe TBI. Patients admitted between October 2011 and October 2022 were assigned to the training set, while patients admitted between November 2022 and May 2023 were designated as the external validation set. Five ML algorithms and LR model were employed to predict the postoperative Glasgow Outcome Scale (GOS) status at discharge using clinical and routine blood data collected upon admission. The Shapley (SHAP) plot was utilized for interpreting the models. RESULTS: A total of 416 patients were included in this study, and they were divided into the training set (n = 396) and the external validation set (n = 47). The ML models, using both clinical and routine blood data, were able to predict postoperative GOS outcomes with area under the curve (AUC) values ranging from 0.860 to 0.900 during the internal cross-validation and from 0.801 to 0.890 during the external validation. In contrast, the LR model had the lowest AUC values during the internal and external validation (0.844 and 0.567, respectively). When blood data was not available, the ML models achieved AUCs of 0.849 to 0.870 during the internal cross-validation and 0.714 to 0.861 during the external validation. Similarly, the LR model had the lowest AUC values (0.821 and 0.638, respectively). Through repeated cross-validation analysis, we found that routine blood data had a significant association with higher mean AUC values in all ML and LR models. The SHAP plot was used to visualize the contributions of all predictors and highlighted the significance of blood data in the lightGBM model. CONCLUSION: The study concluded that ML models could provide rapid and accurate predictions for postoperative GOS outcomes at discharge following moderate-to-severe TBI. The study also highlighted the crucial role of routine blood tests in improving such predictions, and may contribute to the optimization of surgical treatment decision-making for patients with TBI.

20.
J Med Virol ; 96(1): e29388, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235845

RESUMEN

The use of precise epitope peptides as antigens is essential for accurate serological diagnosis of viral-infected individuals, but now it remains an unsolvable problem for mapping precise B cell epitopes (BCEs) recognized by human serum. To address this challenge, we propose a novel epitope delimitation (ED) method to uncover BCEs in the delineated human IgG-reactive (HR) antigenic peptides (APs). Specifically, the method based on the rationale of similarities in humoral immune responses between mammalian species consists of a pair of elements: experimentally delineated HR-AP and rabbit-recognized (RR) BCE motif and corresponding pair of sequence alignment analysis. As a result of using the ED approach, after decoding four RR-epitomes of human papillomavirus types 16/18-E6 and E7 proteins utilizing rabbit serum against each recombinant protein and sequence alignment analysis of HR-APs and RR-BCEs, 19 fine BCEs in 17 of 22 known HR-APs were defined based on each corresponding RR-BCE motifs, including the type-specificity of each delimited BCE in homologous proteins. The test with 22 known 16/20mer HR-APs demonstrated that the ED method is effective and efficient, indicating that it can be used as an alternative method to the conventional identification of fine BCEs using overlapping 8mer peptides.


Asunto(s)
Proteínas Oncogénicas Virales , Péptidos , Animales , Humanos , Conejos , Secuencia de Aminoácidos , Péptidos/genética , Epítopos de Linfocito B , Alineación de Secuencia , Inmunoglobulina G , Mapeo Epitopo/métodos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...