Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Hereditas ; 161(1): 32, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350187

RESUMEN

BACKGROUND: The most common progressive form of non-alcoholic fatty liver disease (NAFLD) is non-alcoholic steatohepatitis (NASH), which is characterized by the development of cirrhosis, and requires liver transplantation. We screened for the differentially expressed necroptosis-related genes in NASH in this study, and analyzed immune infiltration through microarray and bioinformatics analysis to identify potential biomarkers, and explore the molecular mechanisms involved in NASH. METHODS: The GSE24807 microarray dataset of NASH patients and healthy controls was downloaded, and we identified the differentially expressed genes (DEGs). Necroptosis-related differential genes (NRDEGs) were extracted from these DEGs, and functionally annotated by enrichment analyses. The core genes were obtained by constructing gene co-expression networks using weighted gene co-expression network analysis (WGCNA). Finally, the transcription factor (TF) regulatory network and the mRNA-miRNA network were constructed, and the infiltrating immune cell populations were analyzed with CIBERSORT. RESULTS: We identified six necroptosis-related genes (CASP1, GLUL, PYCARD, IL33, SHARPIN, and IRF9), and they are potential diagnostic biomarkers for NASH. In particular, PYCARD is a potential biomarker for NAFLD progression. Analyses of immune infiltration showed that M2 macrophages, γδ T cells, and T follicular helper cells were associated with the immune microenvironment of NASH, which is possibly regulated by CASP1, IL33, and IRF9. CONCLUSIONS: We identified six necroptosis-related genes in NASH, which are also potential diagnostic biomarkers. Our study provides new insights into the molecular mechanisms and immune microenvironment of NASH.


Asunto(s)
Redes Reguladoras de Genes , Necroptosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Necroptosis/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Biomarcadores
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273124

RESUMEN

Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to assist infection or propagation. A number of T3Es inhibit plant immunity, but the biochemical basis for a vast majority of them remains unknown. Previous research has revealed that the evolutionarily conserved XopL-family effector XopLXcc inhibits plant immunity, although the underlying mechanisms remain incompletely elucidated. In this study, we identified proton pump interactor (PPI1) as a specific virulence target of XopLXcc in Arabidopsis. Notably, the C-terminus of PPI1 and the Leucine-rich repeat (LRR) domains of XopLXcc are pivotal for facilitating this interaction. Our findings indicate that PPI1 plays a role in the immune response of Arabidopsis to Xcc. These results propose a model in which XopLXcc binds to PPI1, disrupting the early defense responses activated in Arabidopsis during Xcc infection and providing valuable insights into potential strategies for regulating plasma membrane (PM) H+-ATPase activity during infection. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to the development of effective strategies for controlling bacterial diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Bacterianas , Enfermedades de las Plantas , Xanthomonas campestris , Arabidopsis/microbiología , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Xanthomonas campestris/patogenicidad , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Inmunidad Innata , Inmunidad de la Planta , Interacciones Huésped-Patógeno/inmunología , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Virulencia , Unión Proteica
3.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062838

RESUMEN

LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which is a response regulator of the two-component system (TCS) that belongs to the LuxR family. These findings of the experiment reveal that VmsR plays a crucial role in regulating pathogenicity, motility, biofilm formation, and the production of extracellular polysaccharides (EPSs) in Xoc GX01. Notably, our study shows that the vmsR mutant exhibits a reduced swimming motility but an enhanced swarming motility. Furthermore, this mutant displays decreased virulence while significantly increasing EPS production and biofilm formation. We have uncovered that VmsR directly interacts with the promoter regions of fliC and fliS, promoting their expression. In contrast, VmsR specifically binds to the promoter of gumB, resulting in its downregulation. These findings indicate that the knockout of vmsR has profound effects on virulence, motility, biofilm formation, and EPS production in Xoc GX01, providing insights into the intricate regulatory network of Xoc.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Plant J ; 119(5): 2423-2436, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38995679

RESUMEN

Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.


Asunto(s)
Proteínas Bacterianas , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Xanthomonas , Oryza/microbiología , Oryza/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Xanthomonas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Virulencia/genética , Regiones Promotoras Genéticas/genética , Resistencia a la Enfermedad/genética , Sistemas CRISPR-Cas , Edición Génica , Plantas Modificadas Genéticamente
5.
Nano Lett ; 24(31): 9750-9759, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052067

RESUMEN

Clostridium butyricum (CbAgo)-based bioassays are popular due to their programmability and directional cleavage capabilities. However, the relatively compact protein structure of CbAgo limits its cleavage activity (even at the optimal temperature), thus restricting its wider application. Here, we observed that guide DNA (gDNA) with specific structural features significantly enhanced CbAgo cleavage efficiency. Then, we invented a novel gDNA containing DNAzyme segments (gDNAzyme) that substantially enhanced the CbAgo cleavage efficency (by 100%). Using a molecular dynamics simulation system, we found that the augmented cleavage efficiency might be attributed to the large-scale global movement of the PIWI domain of CbAgo and an increased number of cleavage sites. Moreover, this gDNAzyme feature allowed us to create a biosensor that simultaneously and sensitively detected three pathogenic bacteria without DNA extraction and amplification. Our work not only dramatically expands applications of the CbAgo-based biosensor but also provides unique insight into the protein-DNA interactions.


Asunto(s)
Proteínas Argonautas , Técnicas Biosensibles , Clostridium butyricum , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Técnicas Biosensibles/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , Simulación de Dinámica Molecular , ADN/química
6.
Parasitol Res ; 123(7): 266, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985357

RESUMEN

Cryptosporidium infection is a common occurrence in rodents worldwide. In this study, 435 wild brown rats were captured from an animal feedlot in Xinjiang, China, with a fecal sample obtained directly from the rectal contents of each rat. The DNA extracted from these fecal samples was analyzed for Cryptosporidium spp. using PCR targeting the SSU rRNA gene. The prevalence of Cryptosporidium infection in brown rats was found to be 5.5% (24 out of 435). Interestingly, the infection rates varied among different animal enclosures, with rates of 0% in the chicken coop (0/51), cowshed (0/3), and varying rates in other areas including the sheepfold (6.1%, 6/98), the pigsty (7.6%, 10/132), the dovecote (7.0%, 5/71), and outdoor environments (3.8%, 3/80). The study identified three species and one genotype of Cryptosporidium, namely C. occultus (n = 10), C. parvum (n = 4), C. ditrichi (n = 1), and Cryptosporidium rat genotype IV (n = 9). Additionally, two of the C. parvum isolates were successfully subtyped as IIdA19G1 (n = 2) at the gp60 gene. These results offer valuable insights into the prevalence and genetic diversity of Cryptosporidium in brown rats within the region.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Heces , Animales , Cryptosporidium/genética , Cryptosporidium/clasificación , Cryptosporidium/aislamiento & purificación , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , China/epidemiología , Ratas/parasitología , Heces/parasitología , Prevalencia , Genotipo , ADN Protozoario/genética , Filogenia , Enfermedades de los Roedores/parasitología , Enfermedades de los Roedores/epidemiología , Reacción en Cadena de la Polimerasa
7.
Life Sci ; 351: 122787, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851418

RESUMEN

BACKGROUND: Exosomes play a crucial role in promoting tumor progression, dissemination, and resistance to treatment. These extracellular vesicles hold promise as valuable indicators for cancer detection. Our investigation focuses on exploring the significance and clinical relevance of exosomal miRNAs in small cell lung cancer (SCLC). METHODS: Serum exosomes were isolated from both SCLC patients and healthy controls, and subjected to exosomal miRNA sequencing analysis. Mimics and inhibitors were employed to investigate the function of exosomal miR-1128-5p in cell migration and proliferation, both in vitro and in vivo. Western blot and luciferase assay were utilized to identify the interaction between miR-1228-5p and dual specificity phosphatase 22 (DUSP22). RESULTS: Exosomal miRNA sequencing analysis revealed enrichment of specific miRNAs in SCLC compared to healthy controls. Circulating miR-1228-5p was upregulated in SCLC patients, associated with advanced stages, suggesting its potential oncogenic role. In vitro, miR-1228-5p expression was significantly higher in SCLC cells than in normal cells. SCLC cell-derived exosomes contained elevated levels of miR-1228-5p, facilitating its entry into co-cultured cells. Notably, migration and proliferation induced by SCLC exosomes were mainly mediated by miR-1228-5p. In vivo experiments confirmed these findings. Western blot analysis demonstrated miR-1228-5p's regulation of DUSP22 expression, and luciferase reporter assay validated DUSP22 as a direct target gene. Overexpressing DUSP22 counteracted miR-1228-5p's promotion of SCLC cell proliferation and migration. CONCLUSIONS: Collectively, our results suggest that exosomes play a role in facilitating cancer growth and metastasis by delivering miR-1228-5p. Moreover, circulating exosomal miR-1228-5p may serve as a potential marker for SCLC diagnosis and prognosis.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Fosfatasas de Especificidad Dual , Exosomas , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Carcinoma Pulmonar de Células Pequeñas , Humanos , MicroARNs/genética , Exosomas/metabolismo , Exosomas/genética , Proliferación Celular/genética , Movimiento Celular/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Masculino , Femenino , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Animales , Ratones , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Persona de Mediana Edad , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Anciano
8.
Pathogens ; 13(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38921746

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease.

9.
Stress Biol ; 4(1): 7, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270818

RESUMEN

Previously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila. Considering that Fusarium spp. are a group of widely distributed fungal pathogens, we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar (Guitang42), using a suitable inoculation method established based on infection assays using Badila. We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42, to different extents. To better investigate the potential pathogenicity mechanisms, we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains. The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb, with G + C contents of 48.0-48.5%, and 14,154-15,175 coding genes. The coding genes were annotated by multiple public databases, and potential pathogenic genes were predicted using proprietary databases (such as PHI, DFVF, CAZy, etc.). Furthermore, based on evolutionary analysis of the coding sequence, we found that contraction and expansion of gene families occurred in the three Fusarium strains. Overall, our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane, and provide clues to understand the pathogenic mechanisms of Fusarium spp. causing sugarcane root rot.

10.
Parasitol Res ; 123(1): 7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053002

RESUMEN

Enterocytozoon bieneusi is responsible for opportunistic infections leading to gastrointestinal diseases in humans and animals worldwide. A total of 334 fresh fecal samples were collected from wild Altai marmots (Marmota baibacina) in Xinjiang, China, and E. bieneusi was screened via PCR amplification of the internal transcribed spacer (ITS) region of the small submit ribosomal RNA (SSU rRNA). The results indicated that 22.8% (76/334) of the wild Altai marmot fecal samples were positive for E. bieneusi, and the highest positive rate was detected in Akqi (51.9%, 27/52), with a significant difference from other sampling sites (p < 0.01). Four known genotypes (BEB6, CHG3, GX2, and YAK1) and three novel genotypes (XJHT2 to XJHT4) were identified in the present study. Genotype XJHT3 was dominant and detected in 48 fecal samples. In the phylogenetic analysis, the novel genotypes XJHT2 and XJHT3 were clustered in Group 1 together with the known genotype YAK1, while genotypes CHG3 and BEB6 were clustered in Group 2. The novel genotype XJHT4 was clustered together with other rodent-derived genotypes and generated a novel Group 14. These data confirmed the host specificity and adaptation of E. bieneusi in rodents. These findings enrich our understanding of the prevalence and genetic diversity of E. bieneusi in wild Altai marmots in Xinjiang, China.


Asunto(s)
Enterocytozoon , Microsporidiosis , Animales , Humanos , Análisis de Secuencia de ADN , Marmota , Enterocytozoon/genética , ADN Espaciador Ribosómico/genética , Especificidad del Huésped , Filogenia , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Genotipo , China/epidemiología , Heces , Prevalencia
11.
Eur J Med Res ; 28(1): 605, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115130

RESUMEN

BACKGROUND: The morbidity and mortality rates of patients with non-alcoholic fatty liver disease (NAFLD) have been steadily increasing in recent years. Previous studies have confirmed the important role of ferroptosis in NAFLD development; however, the precise mechanism through which ferroptosis influences NAFLD occurrence remains unclear. The present study aimed to identify and validate ferroptosis-related genes involved in NAFLD pathogenesis and to investigate the underlying molecular mechanisms of NAFLD. METHODS: We downloaded microarray datasets GSE72756 and GSE24807 to identify differentially expressed genes (DEGs) between samples from healthy individuals and patients with NAFLD. From these DEGs, we extracted ferroptosis-related DEGs. GSE89632, another microarray dataset, was used to validate the expression of ferroptosis-related genes. A protein-protein interaction (PPI) network of ferroptosis-related genes was then constructed. The target genes were also subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, competing endogenous RNA networks were constructed. We used the CIBERSORT package to evaluate the infiltration of immune cells infiltration in NAFLD. RESULTS: Five ferroptosis-related genes (SCP2, MUC1, DPP4, SLC1A4, and TF) were identified as promising diagnostic biomarkers for NAFLD. Enrichment analyses revealed that these genes are mainly involved in metabolic processes. NEAT1-miR-1224-5p-SCP2, NEAT1-miR-485-5p-MUC1, MALAT1-miR-485-5p-MUC1, and CNOT6-miR-145-5p-SLC1A4 are likely to be the potential RNA regulatory pathways that affect NAFLD development. Principal component analysis indicated significant differences in immune cell infiltration between the two groups. CONCLUSIONS: This study identified five ferroptosis-related genes as potential biomarkers for diagnosing NAFLD. The correlations between the expression of ferroptosis-related genes and immune cell infiltration might shed light on the study of the molecular mechanism underlying NAFLD development.


Asunto(s)
Ferroptosis , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Ferroptosis/genética , Biología Computacional , Biomarcadores
12.
Front Plant Sci ; 14: 1209384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528980

RESUMEN

Rice (Oryza sativa L.) is a staple food in many countries around the world, particularly in China. The production of rice is seriously affected by the bacterial leaf streak and rice blast, which can reduce rice yield or even cause it to fail to be harvested. In this study, susceptible material 58B was edited by CRISPR/Cas9, targeting a target of the Pi21 gene and a target of the effector-binding element (EBE) of the OsSULTR3;6 gene, and the mutants 58b were obtained by Agrobacterium-mediated method. The editing efficiency of the two targets in the T0 generation was higher than 90.09%, the homozygous mutants were successfully selected in the T0 generation, and the homozygous mutation rate of each target was higher than 26.67%. The expression of the edited pi21 and EBE of Ossultr3;6 was significantly reduced, and the expression of defense responsive genes was significantly upregulated after infected with rice blast. The lesion areas of rice blast and bacterial leaf streak were significantly reduced in 58b, and the resistance of both was effectively improved. Furthermore, the gene editing events did not affect the agronomic traits of rice. In this study, the resistance of 58b to rice blast and bacterial leaf streak was improved simultaneously. This study provides a reference for using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) to accelerate the improvement of rice varieties and the development of new materials for rice breeding.

13.
Front Microbiol ; 13: 983781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246295

RESUMEN

Biological control is an effective measure in the green control of rice diseases. To search for biocontrol agents with broad-spectrum and high efficiency against rice diseases, in this study, a strain of antagonistic bacterium BR-01 with strong inhibitory effect against various rice diseases was isolated from Bolbostemmatis Rhizoma by plate confrontation method. The strain was identified as Bacillus velezensis by morphological observation, physiological and biochemical identification, and molecular characterization by 16S rDNA and gyrB gene sequencing analysis. The confrontation test (dual culture) and Oxford cup assays demonstrated that B. velezensis BR-01 had strong antagonistic effects on Magnaporthe oryzae, Ustilaginoidea virens, Fusarium fujikuroi, Xanthomonas oryzae pv. Oryzicola, and Xanthomonas oryzae pv. oryzae, the major rice pathogens. The genes encoding antimicrobial peptides (ituA, ituD, bmyB, bmyC, srfAA, fenB, fenD, bacA, and bacD) were found in B. velezensis BR-01 by PCR amplification with specific primers. B. velezensis BR-01 could produce protease, cellulase, ß-1,3-glucanase, chitinase, indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and might produce three lipopeptide antibiotics, surfactin, iturin, and fengycin based on Liquid chromatography-mass spectrometry (LC-MS) results. Furthermore, the plant assays showed that B. velezensis BR-01 had significant control effects on rice bacterial blight and bacterial leaf streak by pot experiments in greenhouse. In conclusion, B. velezensis BR-01 is a broad-spectrum antagonistic bacterium and has the potential as the ideal biocontrol agent in controlling multiple rice diseases with high efficiency.

14.
Front Microbiol ; 13: 867633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572630

RESUMEN

Xanthomonas oryzae pv. textitoryzae (Xoo) is a causal agent of rice bacterial leaf blight (BLB), the major rice disease, which is seriously constraining rice production in Asia. The interaction between Xoo and rice is in a dynamic process, essentially the co-evolution. Tracking the occurrence of plant diseases and identifying the epidemic pathogens in time are critical to assessing the epidemic disease status and understanding the pathogen evolution. In 2020, the occurrences of rice BLB were spotted in many places of Guangxi, the major rice growing region in China. Two of the 2020-epidemic Xoo strains, namely, GXO20-01 and GXO20-06, were isolated from low land and high mountain paddies in Guangxi, respectively, and were demonstrated to be race R8 of Chinese Xoo strains, but with significantly different virulence on certain susceptible varieties of rice. The HiFi PacBio sequencing revealed that GXO20-01 and GXO20-06 share the highly syntenic genome structures and the major genome contents, but only differ in <10 genes, including one gene encoding for transcription activator-like effector (TALE). A phylogenomic analysis grouped GXO20-01 and GXO20-06 into the PX-A lineage, stood close to PXO563 and PXO71 strains, but stood away from the other Chinese Xoo strains; for example, the JL25 and YC11. A comparative genomic analysis revealed that the major pathogenicity/virulence genes are conserved in two, newly isolated Xoo strains and the other Xoo strains in PX-A lineage, including the majority genes for the TALomes. The genomic differences between the Xoo strains were pinpointed to a few tal genes, which were variable in both their numbers and sequences, even between GXO20-01 and GXO20-06, the two 2020-epidemic Xoo strains. The study further revealed the instability and variability of tal genes in Xoo and highlighted the utility of HiFi long-read sequencing in TALE analysis and pathogen tracking.

18.
Rice (N Y) ; 14(1): 38, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33891171

RESUMEN

BACKGROUND: Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo. FINDINGS: We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types. CONCLUSIONS: In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.

19.
Biosens Bioelectron ; 178: 113034, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548652

RESUMEN

In this work, a sensitive electrochemical method for bleomycin (BLM) determination was reported on the basis of BLM-mediated activation of Zn2+-dependent DNAzyme and the adsorption of signal probes by a metal-organic framework (MOF) modified electrode. Two hairpin DNAs were employed in this protocol, one (HP1) for BLM recognition and one (HP2) for amplified signal output. The presence of BLM and Fe2+ caused the formation of BLM-Fe (II) complex to cleave HP1, releasing DNAzyme fragments, which could further hybridize with substrate HP2 to form a partial double-stranded DNA duplex and enable the activation of Zn2+-dependent DNAzyme with the coexistence of Zn2+. The Zn2+-dependent DNAzyme catalyzed the cyclic cleavage of magnetic beads (MB)-immobilized HP2 to release massive DNA fragments with a Fc-labeled- terminal, which could be used for BLM quantification through electrochemical measurement after their adsorption on a MOF modified electrode. Attributing to the high catalytic efficiency of DNAzyme and excellent electrochemical performance of MOF modified electrode, our method revealed an impressive limit of detection as low as 4 pM BLM with a linear range of 5-2000 pM. Besides, the easy synthesis of MOF without further modification and the easy way of adsorption for signal achievement facilitated the operation process. In virtue of the high sensitivity, selectivity and the simple-to-implement features, this method is believed to hold a great promising application for BLM determination in biomedical and clinical study.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Estructuras Metalorgánicas , Bleomicina , Electrodos , Límite de Detección
20.
Org Lett ; 22(19): 7486-7490, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32909758

RESUMEN

A class of 2-aminopyridine 1-oxides are discovered to be effective ligands for the Cu-catalyzed amination of less reactive (hetero)aryl chlorides. A wide range of functionalized (hetero)aryl chlorides reacted with various aliphatic amines to afford the desired products in good to excellent yields under the catalyst of CuI/2-aminopyridine 1-oxides. Furthermore, the catalyst system worked well for the coupling of cyclic secondary amines and N-methyl benzylamine with (hetero)aryl chlorides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...