Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 259: 119537, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960362

RESUMEN

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

2.
Eur J Med Chem ; 276: 116706, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053188

RESUMEN

In 2023, the U.S. Food and Drug Administration has approved 55 novel medications, consisting of 17 biologics license applications and 38 new molecular entities. Although the biologics license applications including antibody and enzyme replacement therapy set a historical record, the new molecular entities comprising small molecule drugs, diagnostic agent, RNA interference therapy and biomacromolecular peptide still account for over 50 % of the newly approved medications. The novel and privileged scaffolds derived from drugs, active molecules and natural products are consistently associated with the discovery of new mechanisms, the expansion of clinical indications and the reduction of side effects. Moreover, the structural modifications based on the promising scaffolds can provide the clinical candidates with the improved biological activities, bypass the patent protection and greatly shorten the period of new drug discovery. Therefore, conducting an appraisal of drug approval experience and related information will expedite the identification of more potent drug molecules. In this review, we comprehensively summarized the pertinent information encompassing the clinical application, mechanism, elegant design and development processes of 28 small molecule drugs, and expected to provide the promising structural basis and design inspiration for pharmaceutical chemists.

3.
J Environ Manage ; 366: 121867, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032259

RESUMEN

Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar. Results showed that the co-addition of separated biochar and AHL achieved best methane production performance, with the maximal methane yield of 154.7 mL/g volatile suspended solids, which increased by 51.9%, 47.2%, 17.9%, and 39.4% respectively compared to that of control, AHL-loaded biochar, sole AHL, and sole biochar groups. The reason was that the co-addition of separated biochar and AHL promoted the stages of hydrolysis and acidification, promoting the conversion of organic matters and short-chain fatty acids, and optimizing the accumulation of acetate acid. Moreover, the methanogenesis stage also performed best among experimental groups. Correspondingly, the highest activities of electron transfer and coenzyme F420 were obtained, with increase ratios of 33.2% and 27.2% respectively compared to that of control. Furthermore, biochar did more significant effects on the evolution of microbial communities than AHL, and the direct interspecific electron transfer between fermentative bacteria and methanogens were possibly promoted.

4.
Plant Physiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829837

RESUMEN

Soybean (Glycine max [L.] Merr.) is a valuable oil crop but is also highly susceptible to environmental stress. Thus, developing approaches to enhance soybean stress resistance is vital to soybean yield improvement. In previous studies, transcription factor Alfin has been shown to serve as an epigenetic regulator of plant growth and development. However, no studies on Alfin have yet been reported in soybean. In this study, the endoplasmic reticulum (ER) stress- and reactive oxygen species (ROS)-related GmAlfin09 was identified. Screening of genes co-expressed with GmAlfin09 unexpectedly led to the identification of soybean peroxidase 6 (GmPRDX6). Further analyses revealed that both GmAlfin09 and GmPRDX6 were responsive to ER stress, with GmPRDX6 localizing to the ER under stress. Promoter binding experiments confirmed the ability of GmAlfin09 to bind to the GmPRDX6 promoter directly. When GmAlfin09 and GmPRDX6 were overexpressed in soybean, enhanced ER stress resistance and decreased ROS levels were observed. Together, these findings suggest that GmAlfin09 promotes the upregulation of GmPRDX6, and GmPRDX6 subsequently localizes to the ER, reduces ROS levels, promotes ER homeostasis, and ensures the normal growth of soybean even under ER stress. This study highlights a vital target gene for future molecular breeding of stress-resistant soybean lines.

5.
Adv Sci (Weinh) ; 11(25): e2309657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654462

RESUMEN

Alleviating the decomposition of the electrolyte is of great significance to improving the cycle stability of cathodes, especially for LiCoO2 (LCO), its volumetric energy density can be effectively promoted by increasing the charge cutoff voltage to 4.6 V, thereby supporting the large-scale application of clean energy. However, the rapid decomposition of the electrolyte under 4.6 V conditions not only loses the transport carrier for lithium ion, but also produces HF and insulators that destroy the interface of LCO and increase impedance. In this work, the decomposition of electrolyte is effectively suppressed by changing the adsorption force between LCO interface and EC. Density functional theory illustrates the LCO coated with lower electronegativity elements has a weaker adsorption force with the electrolyte, the adsorption energy between LCO@Mg and EC (0.49 eV) is weaker than that of LCO@Ti (0.73 eV). Meanwhile, based on the results of time of flight secondary ion mass spectrometry, conductivity-atomic force microscopy, in situ differential electrochemical mass spectrometry, soft X-ray absorption spectroscopy, and nuclear magnetic resonance, as the adsorption force increases, the electrolyte decomposes more seriously. This work provides a new perspective on the interaction between electrolyte and the interface of cathode and further improves the understanding of electrolyte decomposition.

6.
RSC Adv ; 14(17): 11862-11871, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38623293

RESUMEN

Since Na3V2(PO4)3 (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform Na3V2(PO4)2F3 was introduced to form a composite with NVP to increase the energy density. In this study, the sol-gel technique was successfully used to synthesize a Na3V2(PO4)2.75F0.75/C (NVPF·3NVP/C) composite cathode material. The citric acid-derived carbon layer was utilized to construct three-dimensional conducting networks to effectively promote ion and electron diffusion. Furthermore, the composites' synergistic effect accelerates the quick ionic migration and improves the kinetic reaction. In particular, NVP as the dominant phase enhanced the structural stability and significantly increased the capacitive contribution. Therefore, at 0.1C, the discharge capacity of the modified NVPF·3NVP/C composite is 120.7 mA h g-1, which is greater than the theoretical discharge capacity of pure NVP (118 mA h g-1). It discharged 110.9 mA h g-1 of reversible capacity even at an elevated multiplicity of 10C, and after 200 cycles, it retained 64.1% of its capacity. Thus, the effort produced an optimized NVPF·3NVP/C composite cathode material that may be used in the sodium ion cathode.

7.
Environ Pollut ; 349: 123951, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604305

RESUMEN

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.


Asunto(s)
Metales Pesados , Microalgas , Fosfatos , Simbiosis , Aguas Residuales , Contaminantes Químicos del Agua , Metales Pesados/metabolismo , Aguas Residuales/química , Fosfatos/farmacología , Fosfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Zinc
8.
Bioorg Chem ; 145: 107214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417190

RESUMEN

Four new drimane-type sesquiterpenoids and two new nucleoside derivatives (1-6), were isolated from the fungus Helicoma septoconstrictum. Their structures were determined based on the combination of the analysis of their HR-ESI-MS, NMR, ECD calculations data and acid hydrolysis. All the isolated compounds were detected for their bio-activities against MDA-MB-231, A549/DDP, A2780 and HepG2 cell lines. Helicoside C (4) exhibited superior cytotoxicity against the A2780 cell line with IC50 7.5 ± 1.5 µM. The analysis of reactive oxygen species (ROS) revealed that Helicoside C induced an increase in intracellular ROS. Furthermore, the flow cytometry and mitochondrial membrane potential (MMP) analyses unveiled that Helicoside C mediated mitochondrial-dependent apoptosis in A2780 cells. The western blotting test showed that Helicoside C could suppress the STAT3's phosphorylation. These findings offered crucial support for development of H. septoconstrictum and highlighted the potential application of drimane-type sesquiterpenoids in pharmaceuticals.


Asunto(s)
Ascomicetos , Neoplasias Ováricas , Sesquiterpenos Policíclicos , Sesquiterpenos , Humanos , Femenino , Línea Celular Tumoral , Nucleósidos , Neoplasias Ováricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/química , Ascomicetos/metabolismo , Apoptosis
9.
Environ Res ; 251(Pt 1): 118578, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423498

RESUMEN

Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.


Asunto(s)
Carbón Orgánico , Metano , Aguas del Alcantarillado , Carbón Orgánico/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Anaerobiosis , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Álcalis/química , Reactores Biológicos
10.
ACS Appl Mater Interfaces ; 16(5): 6143-6151, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270105

RESUMEN

V5S8 has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of V5S8 still suffers from volume expansion and low conductivity. Herein, a hollow nanotube V5S8@C (H-V5S8@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion. Benefiting from the large specific surface area of the hollow nanotube structure and uniform carbon coating, H-V5S8@C exhibits a more active site and enhanced conductivity. Meanwhile, the heterojunction formed by a few residual MoS2 and the outer layer of V5S8 stabilizes the structure and reduces the ion migration barrier with fast Na+ transport. Specifically, the H-V5S8@C anode provides an enhanced rate performance of 270.1 mAh g-1 at 15 A g-1 and high cycling stability of 291.7 mAh g-1 with a retention rate of 90.98% after 300 cycles at 5 A g-1. This work provides a feasible approach for the structural design of 2D layered materials, which can promote the practical application of fast-charging sodium-ion batteries.

11.
J Basic Microbiol ; 64(1): 68-80, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37717245

RESUMEN

Endophytic fungi are an important source of novel antitumor substances. Previously, we isolated an endophytic fungus, Alternaria alstroemeria, from the medicinal plant Artemisia artemisia, whose crude extracts strongly inhibited A549 tumor cells. We obtained a transformant, namely AaLaeAOE26 , which completely loses its antitumor activity due to overexpression of the global regulator AaLaeA. Re-sequencing analysis of the genome revealed that the insertion site was in the noncoding region and did not destroy any other genes. Metabolomics analysis revealed that the level of secondary antitumor metabolic substances was significantly lower in AaLaeAOE26 compared with the wild strain, in particular flavonoids were more downregulated according to the metabolomics analysis. A further comparative transcriptome analysis revealed that a gene encoding FAD-binding domain protein (Fla1) was significantly downregulated. On the other hand, overexpression of AaFla1 led to significant enhancement of antitumor activity against A549 with a sevenfold higher inhibition ratio than the wild strain. At the same time, we also found a significant increase in the accumulation of antitumor metabolites including quercetin, gitogenin, rhodioloside, liensinine, ginsenoside Rg2 and cinobufagin. Our data suggest that the global regulator AaLaeA negatively affects the production of antitumor compounds via controlling the transcription of AaFla1 in endophytic A. alstroemeria.


Asunto(s)
Alstroemeria , Alternaria , Alternaria/genética , Metabolismo Secundario , Flavonoides/metabolismo , Endófitos
12.
CNS Neurosci Ther ; 30(3): e14426, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37641873

RESUMEN

BACKGROUND: Endovascular treatment for patients with symptomatic nonacute middle cerebral artery occlusion remains clinically challenging, and proof of a beneficial effect on functional outcome is lacking. We aim to evaluate the effectiveness and safety of endovascular recanalization for patients with symptomatic nonacute middle cerebral artery occlusion. METHODS: Ninety-eight patients with symptomatic atherosclerotic nonacute middle cerebral artery occlusion were divided into drug treatment groups (42) and endovascular treatment groups (56). The rate of recanalization, peri-procedural complications, and follow-up results were evaluated. RESULTS: Among the 56 patients who received endovascular treatment, 53 (94.6%) achieved successful recanalization. The rate of peri-procedural complications was 7.1% (4/56), and the death rate was 1.8% (1/56). Any stroke within 90 days was 7.1% (4/56). Among the 42 patients in drug treatment group, any stroke within 90 days was 19.0% (8/42), death rate was 0. CONCLUSION: Among patients with symptomatic nonacute middle cerebral artery occlusion with a short length of occlusion and a moderate-to-good collateral circulation, endovascular treatment seems to be safe. And endovascular treatment could reduce the recurrence rate of stroke.


Asunto(s)
Procedimientos Endovasculares , Accidente Cerebrovascular , Humanos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/cirugía , Resultado del Tratamiento , Accidente Cerebrovascular/terapia , Procedimientos Endovasculares/métodos , Estudios Retrospectivos
13.
Plant Genome ; 17(1): e20333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37122200

RESUMEN

Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas.


Asunto(s)
Cicer , Mapeo Cromosómico , Cicer/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Resistencia a la Sequía
14.
Adv Sci (Weinh) ; 10(36): e2302494, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37985839

RESUMEN

Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.


Asunto(s)
Neoplasias , Reparación del ADN por Recombinación , Humanos , Reparación del ADN por Recombinación/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN/genética , Neoplasias/tratamiento farmacológico , Cohesinas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
15.
Chemosphere ; 345: 140448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839742

RESUMEN

Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.


Asunto(s)
Metales Pesados , Microalgas , Humanos , Aguas Residuales , Simbiosis , Ecosistema , Metales Pesados/análisis , Biomasa , Agua
16.
J Environ Manage ; 345: 118886, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673008

RESUMEN

Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.


Asunto(s)
Compuestos de Potasio , Aguas del Alcantarillado , Ácidos Grasos Volátiles
17.
Environ Pollut ; 337: 122539, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37699452

RESUMEN

Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.


Asunto(s)
Antiinfecciosos , Microalgas , Triclosán , Triclosán/análisis , Microalgas/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Simbiosis , Bacterias/metabolismo , Biomasa
18.
Theranostics ; 13(14): 5017-5056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771770

RESUMEN

Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.


Asunto(s)
Linfoma , Neoplasias , Humanos , Proteínas Cullin/metabolismo , Proteína NEDD8/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Procesamiento Proteico-Postraduccional
19.
J Environ Manage ; 345: 118704, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540982

RESUMEN

Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.


Asunto(s)
Aguas del Alcantarillado , Zeolitas , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos , Bacterias/metabolismo , Metano , Biopelículas , Reactores Biológicos
20.
Plants (Basel) ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447035

RESUMEN

Tung tree (Vernicia fordii) is one of the four major woody oilseed species in China. However, its fruit yield is severely hampered by the low number of female flowers and the imbalanced male-to-female flower ratio, which is a problem that restricts the development of the oilseed industry. Previous research has demonstrated that the exogenous application of cytokinins can significantly augment the number of female flowers, although the underlying regulatory mechanism remains elusive. To elucidate the involvement of VfRR17, a member of the A-type ARRs family, in the exogenous cytokinin regulation of flower sexual differentiation in tung tree, this study conducted a comprehensive bioinformatic analysis of the physicochemical properties, structural characteristics, and evolutionary relationships of the protein encoded by VfRR17. Additionally, gene function analysis was performed using subcellular localization, qRT-PCR, and genetic transformation techniques. The findings revealed that the VfRR17 gene's coding region spanned 471 bp, encoding an unstable protein of 156 amino acids with a relative molecular mass of 17.4 kDa. Phylogenetic analysis demonstrated a higher similarity between VfRR17 of the tung tree and the RR17 gene of Jatropha curcas, Ricinus communis, Hevea brasiliensis, and other species within the Euphorbiaceae family compared to other species, with the greatest similarity of 86% observed with the RR17 gene of Jatropha curcas. The qRT-PCR analysis indicated that VfRR17 exhibited high expression levels during the early stage of tung tree inflorescence buds following 6-BA treatment, peaking at 24 h and displaying a 3.47-fold increase compared to that at 0 h. In female and male flowers of the tung tree, the expression in female flowers during the 1 DBF period was significantly higher than in male flowers, exhibiting a difference of approximately 47.91-fold. Furthermore, notable differential expression was observed in the root, leaf, and petiole segments of the tung tree under low-temperature stress at the 12-h time point. In transgenic Arabidopsis, the VfRR17 lines and wild-type lines exhibited significantly different flowering times under an exogenous 6-BA treatment at a concentration of 2 mg/L, with the VfRR17 lines experiencing an 11-day delay compared to the wild-type lines. Additionally, the number of fruit pods in VfRR17 transgenic Arabidopsis lines was significantly reduced by 28 compared to the wild-type lines at a 6-BA concentration of 3 mg/L. These findings suggest that VfRR17 likely plays a critical role in regulating flower development in response to exogenous 6-BA, providing valuable insights into the mechanisms underlying exogenous 6-BA-mediated regulation of female flower development in the tung tree.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...