Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649746

RESUMEN

Nanoresolved doping of polymeric semiconductors can overcome scaling limitations to create highly integrated flexible electronics, but remains a fundamental challenge due to isotropic diffusion of the dopants. Here we report a general methodology for achieving nanoscale ion-implantation-like electrochemical doping of polymeric semiconductors. This approach involves confining counterion electromigration within a glassy electrolyte composed of room-temperature ionic liquids and high-glass-transition-temperature insulating polymers. By precisely adjusting the electrolyte glass transition temperature (Tg) and the operating temperature (T), we create a highly localized electric field distribution and achieve anisotropic ion migration that is nearly vertical to the nanotip electrodes. The confined doping produces an excellent resolution of 56 nm with a lateral-extended doping length down to as little as 9.3 nm. We reveal a universal exponential dependence of the doping resolution on the temperature difference (Tg - T) that can be used to depict the doping resolution for almost infinite polymeric semiconductors. Moreover, we demonstrate its implications in a range of polymer electronic devices, including a 200% performance-enhanced organic transistor and a lateral p-n diode with seamless junction widths of <100 nm. Combined with a further demonstration in the scalability of the nanoscale doping, this concept may open up new opportunities for polymer-based nanoelectronics.

2.
Sci Rep ; 14(1): 6321, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491118

RESUMEN

To address issues of high water content and low calorific value during combustion of municipal sludge, we added water-absorbent, easy-to-burn agricultural waste to improve the overall combustion performance. Cotton straw or corn stover were added to the sludge and mixed at high-speed to compare their capacities for improving combustion performance. Scanning Electron Microscopy (SEM) revealed that cotton straw or corn stover attached to the surface of the municipal sludge particles after blending, while analysis of thermogravimetric curves and activation energies of the blends showed that combustion and exhaustion rates increased significantly when 40% cotton straw or corn stover were blended into the sludge. Using the quadrilateral cut-ring boiler as a prototype, the mix of sludge with cotton straw or corn stover was simulated, and FLUENT software was used to obtain the temperature and pollutant emissions of the boiler. Sludge blended with cotton straw or corn stover increased furnace temperature and reduced SO2 and NO emissions, while that with cotton straw burned at higher temperatures with lower SO2 and NO emissions. Overall, the CO content of sludge combustion was lower when blended with proportions of cotton straw or corn stover under 50%. The findings of this study lay a theoretical foundation for treatment of municipal sludge according to local conditions.

3.
Genes (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540379

RESUMEN

Toona ciliata is a deciduous or semi-deciduous tree species and belongs to the Toona genus of the Meliaceae family. Owing to low natural regeneration and over-exploitation, the species is listed as an endangered species at level II in China and its conservation has received increasing concern. Here, we sampled 447 individuals from 29 populations across the range-wide distribution of the T. ciliata complex in China and assessed their genetic variation using two chloroplast DNA markers. The results showed that the overall haplotype diversity and nucleotide diversity per site were high at h = 0.9767 and π = 0.0303 for the psbA-trnH fragment and h= 0.8999 and π = 0.0189 for the trnL-trnL fragment. Phylogenetic analysis supported the division of the natural distribution of T. ciliata complex into western and eastern regions. The genetic diversity was higher in the western region than in the eastern region, showing significant phylogeographic structure. Genetic differentiation among populations was moderate (Φst=42.87%), and the effects of isolation by distance (IBD) were significant. A neutrality test and mismatch distribution analysis indicated that the distribution of the T. ciliata complex generally did not expand, although a few local populations could likely expand after bottleneck effects. The overall results were complementary to and consolidated previous studies using mitochondrial and nuclear DNA markers. We finally discussed strategies for the genetic conservation of the T. ciliata complex.


Asunto(s)
Meliaceae , Humanos , Meliaceae/genética , Toona/genética , ADN de Cloroplastos/genética , Variación Genética/genética , Filogenia , Marcadores Genéticos
4.
Plants (Basel) ; 13(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337968

RESUMEN

Forest genetic conservation is typically species-specific and does not integrate interspecific interaction and community structure. It mainly focuses on the theories of population and quantitative genetics. This approach depicts the intraspecific patterns of population genetic structure derived from genetic markers and the genetic differentiation of adaptive quantitative traits in provenance trials. However, it neglects possible interspecific interaction in natural forests and overlooks natural hybridization or subspeciation. We propose that the genetic diversity of a given species in a forest community is shaped by both intraspecific population and interspecific community evolutionary processes, and expand the traditional forest genetic conservation concept under the community ecology framework. We show that a community-specific phylogeny derived from molecular markers would allow us to explore the genetic mechanisms of a tree species interacting with other resident species. It would also facilitate the exploration of a species' ecological role in forest community assembly and the taxonomic relationship of the species with other species specific to its resident forest community. Phylogenetic ß-diversity would assess the similarities and differences of a tree species across communities regarding ecological function, the strength of selection pressure, and the nature and extent of its interaction with other species. Our forest genetic conservation proposal that integrates intraspecific population and interspecific community genetic variations is suitable for conserving a taxonomic species complex and maintaining its evolutionary potential in natural forests. This provides complementary information to conventional population and quantitative genetics-based conservation strategies.

5.
Biochem Pharmacol ; 220: 115980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081368

RESUMEN

Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and ß-adrenergic receptors (ß-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating ß-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.


Asunto(s)
Receptores Nicotínicos , Neoplasias Gástricas , Humanos , Nicotina/toxicidad , Ciclooxigenasa 2/metabolismo , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/metabolismo , Receptores Nicotínicos/metabolismo , Fumar/efectos adversos
6.
Sci Total Environ ; 912: 169604, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38157907

RESUMEN

Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.


Asunto(s)
Neoplasias Pulmonares , Receptores Nicotínicos , Humanos , Neoplasias Pulmonares/patología , Nicotina/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptores Nicotínicos/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
7.
ACS Omega ; 8(48): 45358-45368, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075754

RESUMEN

Selenium nanoparticles (Se NPs) have significant anticancer effects, but their poor water solubility and dispersibility limit their further applications in biomedical fields. Biomacromolecules have often been used as dispersants or stabilizers in synthesized Se NPs because they can enhance the dispersibility of Se NPs and reduce their side effects. Our previous studies reported a triple-helix ß-glucan (BFP) from the fruiting bodies of black fungus, which showed a good self-assembly ability in constructing hollow nanotubes for loading metal nanoparticles. Therefore, in the present work, BFP nanotubes were designed as carriers to entrap large amounts of Se NPs in order to enhance their stability and anticancer effects. The results showed that Se NPs were successfully synthesized and loaded inside the BFP nanotubes, and the composite (BFP-Se) exhibited high stability and dispersibility due to the covalent Se-O bonds between the Se NPs and the hydroxyl groups on the BFP nanotubes. Moreover, BFP-Se showed significant effects on the proliferation, apoptosis, and cell cycle of HepG2 cells compared to those exhibited by Se NPs. The mechanism was associated with BFP, which acted as a dispersant or stabilizer, resulting in the enhanced cellular uptake of the Se NPs. BFP also activated the death receptor-mediated and mitochondria-mediated apoptotic pathways in HepG2 cells. These results suggest that BFP-Se has potential applications in biomedical fields, especially for the treatment of human liver cancers.

8.
Ecol Evol ; 13(12): e10828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094154

RESUMEN

Toona ciliata is an endangered species due to over-cutting and low natural regeneration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloroplast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.

9.
Gut Pathog ; 15(1): 39, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542330

RESUMEN

The human gut bacteriome is believed to have pivotal influences on human health and disease while the particular roles associated with the gut phageome have not been fully characterized yet with few exceptions. It is argued that gut microbiota can have a potential role in autism spectrum disorders (ASD). The public microbiota database of ASD and typically developing (TD) Chinese individuals were analyzed for phage protein-coding units (pPCU) to find any link between the phageome and ASD. The gut phageome of ASD individuals showed a wider diversity and higher abundance compared to TD individuals. The ASD phageome was associated with a significant expansion of Caudoviricetes bacteriophages. Phages infecting Bacteroidaceae and prophages encoded within Faecalibacterium were more frequent in ASD than in TD individuals. The expansion and diversification of ASD phageome can influence the bacterial homeostasis by imposing pressure on the bacterial communities. In conclusion, the differences of phages community in in ASD and TD can be used as potential diagnosis biomarkers of ASD. Further investigations are needed to verify the role of gut phage communities in the pathogenesis of ASD.

10.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561000

RESUMEN

Alternation of generations in plant life cycle provides a biological basis for natural selection occurring in either the gametophyte or the sporophyte phase or in both. Divergent biphasic selection could yield distinct evolutionary rates for phase-specific or pleiotropic genes. Here, we analyze models that deal with antagonistic and synergistic selection between alternative generations in terms of the ratio of nonsynonymous to synonymous divergence (Ka/Ks). Effects of biphasic selection are opposite under antagonistic selection but cumulative under synergistic selection for pleiotropic genes. Under the additive and comparable strengths of biphasic allelic selection, the absolute Ka/Ks for the gametophyte gene is equal to in outcrossing but smaller than, in a mixed mating system, that for the sporophyte gene under antagonistic selection. The same pattern is predicted for Ka/Ks under synergistic selection. Selfing reduces efficacy of gametophytic selection. Other processes, including pollen and seed flow and genetic drift, reduce selection efficacy. The polymorphism (πa) at a nonsynonymous site is affected by the joint effects of selfing with gametophytic or sporophytic selection. Likewise, the ratio of nonsynonymous to synonymous polymorphism (πa/πs) is also affected by the same joint effects. Gene flow and genetic drift have opposite effects on πa or πa/πs in interacting with gametophytic and sporophytic selection. We discuss implications of this theory for detecting natural selection in terms of Ka/Ks and for interpreting the evolutionary divergence among gametophyte-specific, sporophyte-specific, and pleiotropic genes.


Asunto(s)
Células Germinativas de las Plantas , Polen , Polen/genética , Polimorfismo Genético , Plantas , Evolución Biológica , Selección Genética
11.
Drug Discov Today ; 28(8): 103640, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236524

RESUMEN

Numerous tubulin-targeted podophyllotoxin congeners have been designed and synthesized to overcome the poor water solubility of podophyllotoxin and improve its pharmaceutical characteristics. Understanding the interaction of tubulin with its downstream signal transduction pathways is important for insights into the role of tubulin in the anticancer action of podophyllotoxin-based conjugates. In this review, we provide a detailed account of recent advances in tubulin targeting-podophyllotoxin derivatives with a focus on their antitumor action and potential molecular signaling pathways directly involved in tubulin depolymerization. Such information will be of benefit to researchers designing and developing anticancer drugs derived from podophyllotoxin. Moreover, we also discuss the associated challenges and future opportunities in this field.


Asunto(s)
Antineoplásicos , Podofilotoxina , Podofilotoxina/farmacología , Podofilotoxina/uso terapéutico , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Relación Estructura-Actividad
12.
Funct Plant Biol ; 50(6): 470-481, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37072372

RESUMEN

The apetala/ethylene responsive factor (AP2/ERF) family is one of the largest plant-specific transcription factors and plays a vital role in plant development and response to stress. The apetala 2.4 (RAP2.4) gene is a member of the AP2/ERF family. In this study, ClRAP2.4 cDNA fragment with 768bp open reading frame was cloned and the resistance of ClRAP2.4 overexpression to low temperature was investigated to understand whether RAP2.4 is involved in low-temperature stress in chrysanthemum (Chrysamthemum lavandulifolium ). Phylogenetic analysis showed that ClRAP2.4 belonged to the DREB subfamily and was most closely related to AT1G22190. ClRAP2.4 was localised in cell nucleus and promotes transcriptional activation in yeast. In addition, ClRAP2.4 was transformed by using the Agrobacterium -mediated leaf disc method, and four overexpression lines (OX-1, OX-2, OX-7, and OX-8) were obtained. The activities of superoxide dismutase and peroxidase, and proline content in leaves in the four overexpression line were higher than those in the wild type (WT), whereas the electrical conductivity and malondialdehyde content were decreased, indicating that the tolerance of plants with ClRAP2.4 overexpression to cold stress was increased. RNA-Seq showed 390 differentially expressed genes (DEGs) between the transgenic and WT plants(229 upregulated, 161 downregulated). The number of ABRE , LTR , and DRE cis -elements in the promoters of DEGs were 175, 106, and 46, respectively. The relative expression levels of ClCOR , ClFe/MnSOD , ClPOD , ClNCL , ClPLK , ClFAD , and ClPRP in the transgenic plants were higher than those in WT plants at low temperatures. These data suggest that ClRAP2.4 may increase chrysanthemum tolerance to cold stress.


Asunto(s)
Chrysanthemum , Respuesta al Choque por Frío , Respuesta al Choque por Frío/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
13.
Genes (Basel) ; 14(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37107613

RESUMEN

Neolamarckia cadamba (Roxb.) Bosser is a fast-growing deciduous tree species and belongs to the Neolamarckia genus of the Rubiaceae family. This species has great economic and medical values in addition to being an important timber species for multiple industrial purposes. However, few studies have examined the genetic diversity and population structure in the natural distribution of this species in China. Here, we applied both the haploid nrDNA ITS (619 bp for aligned sequences) and mtDNA (2 polymorphic loci) markers to investigate 10 natural populations (239 individuals in total) that covered most of the distribution of the species in China. The results showed that the nucleotide diversity was π = 0.1185 ± 0.0242 for the nrDNA ITS markers and π = 0.00038 ± 0.00052 for the mtDNA markers. The haplotype diversity for the mtDNA markers was h = 0.1952 ± 0.2532. The population genetic differentiation was small (Fstn = 0.0294) for the nrDNA ITS markers but large (Fstm = 0.6765) for the mtDNA markers. There were no significant effects of isolation by distance (IBD), by elevation, and by two climatic factors (annual average precipitation and tem perature). A geographic structure among populations (Nst

Asunto(s)
Variación Genética , Rubiaceae , Humanos , Variación Genética/genética , Filogenia , Fitomejoramiento , ADN Mitocondrial/genética , Rubiaceae/genética
14.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36892156

RESUMEN

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Calidad de Vida
15.
Adv Healthc Mater ; 12(4): e2202317, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349826

RESUMEN

In the process of bone tissue regeneration, regulation of osteogenesis-angiogenesis coupling is of great importance. Therefore, dimethyloxallyl glycine (DMOG) is loaded by nanoscale zeolitic imidazolate frameworks-8 (ZIF-8) to obtain a drug-loading system that can promote osteogenesis-angiogenesis coupling. Characterization of the drug-loading nanoparticles (DMOG@ZIF-8) reveals that DMOG is successfully loaded into ZIF-8 by two different methods, and the DMOG@ZIF-8 is prepared using the one-pot method (OD@ZIF-8) achieves higher loading efficiency and longer release time than those prepared using the post-loading method (PD@ZIF-8). In vitro studies found that DMOG@ZIF-8 significantly enhances the migration, tube formation, and angiogenesis-related protein secretion of human umbilical vein endothelial cells as well as the extracellular matrix mineralization, alkaline phosphatase activity, and osteogenesis-related protein secretion of bone marrow mesenchymal stem cells. Moreover, OD@ZIF-8 nanoparticles are more efficient than PD@ZIF-8 nanoparticles in induction of osteogenesis-angiogenesis coupling. Then, in vivo cranial critical defect model shows that the addition of OD@ZIF-8 significantly promotes vascularized bone formation as indicated by the results including microcomputed tomographic, histological and immunofluorescence staining, and so on. Taken together, loading ZIF-8 with DMOG may be a promising solution for critical-sized bone defect reconstruction and the one-pot method is preferred in the preparation of such drug-loading system.


Asunto(s)
Zeolitas , Humanos , Zeolitas/farmacología , Células Endoteliales , Regeneración Ósea , Osteogénesis
16.
Adv Mater ; 35(2): e2208215, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305596

RESUMEN

Breaking the thermoelectric (TE) trade-off relationship is an important task for maximizing the TE performance of polymeric semiconductors. Existing efforts have focused on designing high-mobility semiconductors and achieving ordered molecular doping, ignoring the critical role of the molecular orientation during TE conversion. Herein, the achievement of ZT to 0.40 is reported by fine-tuning the molecular orientation of one diketopyrrolopyrrole (DPP)-based polymer (DPP-BTz). Films with bimodal molecular orientation yield superior doping efficiency by increasing the lamellar spacing and achieve increased splitting between the Fermi energy and the transport energy to enhance the thermopower. These factors contribute to the simultaneous improvement in the Seebeck coefficient and electrical conductivity in an unexpected manner. Importantly, the bimodal film exhibits a maximum power factor of up to 346 µW m-1 K-2 , >400% higher than that of unimodal films. These results demonstrate the great potential of molecular orientation engineering in polymeric semiconductors for developing state-of-the-art organic TE (OTE) materials.

17.
Physiol Mol Biol Plants ; 28(10): 1799-1811, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36484029

RESUMEN

Anthocyanins are natural pigments and play significant roles in multiple growth, development, and stress response processes in plants. The vegetables with high anthocyanin content have better colours, higher antioxidant activity than green vegetables and are potent antioxidants with health benefits. However, the mechanism of anthocyanin accumulation in purple and green leaves of Raphanus sativus (radish) is poorly understood and needs further investigation. In the present study, the pigment content in a green leaf cultivar "RA9" and a purple-leaf cultivar "MU17" was characterized and revealed that the MU17 had significantly increased accumulation of anthocyanins and reduced content of chlorophyll and carotenoid compared with that in RA9. Meanwhile, these two cultivars were subjected to a combination of metabolomic and transcriptome studies. A total of 52 massively content-changed metabolites and 3463 differentially expressed genes were discovered in MU17 compared with RA9. In addition, the content of significantly increased flavonoids (such as pelargonidin and cyanidin) was identified in MU17 compared to RA9 using an integrated analysis of metabolic and transcriptome data. Moreover, the quantitative real-time polymerase chain reaction results also confirmed the differences in the expression of genes related to pathways of flavonoids and anthocyanin metabolism in MU17 leaves. The present findings provide valuable information for anthocyanin metabolism and further genetic manipulation of anthocyanin biosynthesis in radish leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01245-w.

18.
Foods ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36429243

RESUMEN

The characterization and bioactive properties of carotenoid produced by Gordonia rubripertincta GH-1 originating from Pixian Douban (PXDB), the Chinese traditional condiment, was investigated. The produced and purified yellow pigment was characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transformed infrared (FTIR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS), and was identified as carotenoid lutein. Additionally, the bioactive activity of lutein from G. rubripertincta GH-1 was evaluated by measuring the free radical scavenging capacity in vitro and feeding zebrafish lutein through aqueous solution. The results showed that the carotenoid lutein had strong antioxidant capacity and a protective effect on zebrafish eye cells, which could inhibit the apoptosis of eye cells in a concentration dependent manner. The results suggested that carotenoid lutein from G. rubripertincta GH-1 could be utilized as a potential source of natural antioxidants or functional additives for food/pharmaceutical industries.

19.
Adv Sci (Weinh) ; 9(35): e2204553, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36307870

RESUMEN

Silk fibroin (SF) is widely used to fabricate biomaterials for skin related wound caring or monitoring, and its hydrogel state are preferred for their adaptability and easy to use. However, in-depth development of SF hydrogel is restricted by their limited mechanical strength, increased risk of infection, and inability to accelerate tissue healing. Therefore, a structure-function pluralistic modification strategy using composite system of metal organic framework (MOF) as bridge expanding SF's biomedical application is proposed. After developing the photocuring and bonding SF hydrogel, a MOF drug-loading system is utilized to enhance hydrogel's structural strength while endowing its antibacterial and angiogenic properties, yielding a multifunctional SF hydrogel. The synergy between the MOF and SF proteins at the secondary structure level gives this hydrogel reliable mechanical strength, making it suitable for conventional wound treatment, whether for closing incisions quickly or acting as adhesive dressings (five times the bonding strength of ordinary fibrin glue). Additionally, with the antibacterial and angiogenic functions getting from MOF system, this modified SF hydrogel can even treat ischemic trauma with cartilage exposure. This multiple modification should contribute to the improvement of advanced wound care, by promoting SF application in the production of tissue engineering materials.


Asunto(s)
Fibroínas , Estructuras Metalorgánicas , Fibroínas/química , Cicatrización de Heridas , Hidrogeles/química , Materiales Biocompatibles/química
20.
Genes (Basel) ; 13(10)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36292684

RESUMEN

Toona ciliata and Toona sinensis belong to the Toona genus of the Meliaceae family and are important timber species in China. T. ciliata is an endangered species at level II due to overcutting and a low rate of natural regeneration. T. sinensis was cultivated as an economic and nutritious tree for more than 2000 years. The two species differ in flower and leaf morphological traits, reproductive systems, and range size of natural distribution. To reveal the potential molecular basis of these divergences, we examined the similarities and differences in their whole genome sequences. Results indicate that T. ciliata had a higher number of expanded gene families than T. sinensis. The whole genome duplication (WGD) occurred before their speciation. The long-terminal repeats (LTRs) insertion was earlier in the T. ciliata genome (3.2985 ± 2.5007 Mya) than in the T. sinensis genome (3.1516 ± 2.2097 Mya). Twenty-five gene families in the T. ciliata genome were detected to be under positive selection compared with background branches of ten different land species. The T. ciliata genome was highly collinear with the T. sinensis genome, but had low collinearity with the genomes of more distant species. These genomic and evolutionary divergences are potentially associated with the differences between T. ciliata and T. sinensis in terms of their reproductive systems and ecological adaptation.


Asunto(s)
Meliaceae , Toona , Animales , Meliaceae/genética , Hojas de la Planta , Especies en Peligro de Extinción , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA