Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Phys Chem A ; 128(14): 2789-2814, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38551452

RESUMEN

The OH-initiated photo-oxidation of piperidine and the photolysis of 1-nitrosopiperidine were investigated in a large atmospheric simulation chamber and in theoretical calculations based on CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The rate coefficient for the reaction of piperidine with OH radicals was determined by the relative rate method to be kOH-piperidine = (1.19 ± 0.27) × 10-10 cm3 molecule-1 s-1 at 304 ± 2 K and 1014 ± 2 hPa. Product studies show the piperidine + OH reaction to proceed via H-abstraction from both CH2 and NH groups, resulting in the formation of the corresponding imine (2,3,4,5-tetrahydropyridine) as the major product and in the nitramine (1-nitropiperidine) and nitrosamine (1-nitrosopiperidine) as minor products. Analysis of 1-nitrosopiperidine photolysis experiments under natural sunlight conditions gave the relative rates jrel = j1-nitrosoperidine/jNO2 = 0.342 ± 0.007, k3/k4a = 0.53 ± 0.05 and k2/k4a = (7.66 ± 0.18) × 10-8 that were subsequently employed in modeling the piperidine photo-oxidation experiments, from which the initial branchings between H-abstraction from the NH and CH2 groups, kN-H/ktot = 0.38 ± 0.08 and kC2-H/ktot = 0.49 ± 0.19, were derived. All photo-oxidation experiments were accompanied by particle formation that was initiated by the acid-base reaction of piperidine with nitric acid. Primary photo-oxidation products including both 1-nitrosopiperidine and 1-nitropiperidine were detected in the particles formed. Quantum chemistry calculations on the OH initiated atmospheric photo-oxidation of piperidine suggest the branching in the initial H-abstraction routes to be ∼35% N1, ∼50% C2, ∼13% C3, and ∼2% C4. The theoretical study produced an atmospheric photo-oxidation mechanism, according to which H-abstraction from the C2 position predominantly leads to 2,3,4,5-tetrahydropyridine and H-abstraction from the C3 position results in ring opening followed by a complex autoxidation, of which the first few steps are mapped in detail. H-abstraction from the C4 position is shown to result mainly in the formation of piperidin-4-one and 2,3,4,5-tetrahydropyridin-4-ol, whereas H-abstraction from N1 under atmospheric conditions primarily leads to 2,3,4,5-tetrahydropyridine and in minor amounts of 1-nitrosopiperidine and 1-nitropiperidine. The calculated rate coefficient for the piperidine + OH reaction agrees with the experimental value within 35%, and aligning the theoretical numbers to the experimental value results in k(T) = 2.46 × 10-12 × exp(486 K/T) cm3 molecule-1 s-1 (200-400 K).

6.
J Phys Chem A ; 127(34): 7205-7215, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37589656

RESUMEN

The first experimental study of the low-temperature kinetics of the gas-phase reaction between NH2 and NO has been performed. A pulsed laser photolysis-laser-induced fluorescence technique was used to create and monitor the temporal decay of NH2 in the presence of NO. Measurements were carried out over the temperature range of 24-106 K, with the low temperatures achieved using a pulsed Laval nozzle expansion. The negative temperature dependence of the reaction rate coefficient observed at higher temperatures in the literature continues at these lower temperatures, with the rate coefficient reaching 3.5 × 10-10 cm3 molecule-1 s-1 at T = 26 K. Ab initio calculations of the potential energy surface were combined with rate theory calculations using the MESMER software package in order to calculate and predict rate coefficients and branching ratios over a wide range of temperatures, which are largely consistent with experimentally determined literature values. These theoretical calculations indicate that at the low temperatures investigated for this reaction, only one product channel producing N2 + H2O is important. The rate coefficients determined in this study were used in a gas-phase astrochemical model. Models were run over a range of physical conditions appropriate for cold to warm molecular clouds (10 to 30 K; 104 to 106 cm-3), resulting in only minor changes (<1%) to the abundances of NH2 and NO at steady state. Hence, despite the observed increase in the rate at low temperatures, this mechanism is not a dominant loss mechanism for either NH2 or NO under dark cloud conditions.

7.
J Phys Chem A ; 127(31): 6509-6520, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37505100

RESUMEN

The first theoretical results regarding the gas-phase reaction mechanism and kinetics of the CH (X2Π) + OCS reaction are presented here. This reaction has a proposed importance in the removal of OCS in regions of the interstellar medium (ISM) and has the potential to form the recently observed HCS/HSC isomers, with both constitutional isomers having recently been observed in the L483 molecular cloud in a 40:1 ratio. Statistical rate theory simulations were performed on stationary points along the reaction potential energy surface (PES) obtained from ab initio calculations at the RO-CCSD(T)/aug-cc-pV(Q+d)Z//M06-2X-D3/aug-cc-pV(Q+d)Z level of theory over the temperature and total density range of 150-3000 K and 1011-1024 cm-3, respectively, using a Master Equation analysis. Exploration of the reaction potential energy surface revealed that all three pathways identified to create CS + HCO products required surmounting barriers of 16.5 kJ mol-1 or larger when CH approached the oxygen side of OCS, rendering this product formation negligible below 1000 K, and certainly under low-temperature ISM conditions. In contrast, when CH approaches the sulfur side of OCS, only submerged barriers are found along the reaction potential energy surface to create HCCO + S or CO + HCS, both of which are formed via a strongly bound OCC(H)S intermediate (-358.9 kJ mol-1). Conversion from HCS to HSC is possible via a barrier of 77.8 kJ mol-1, which is still -34.1 kJ mol-1 below the CH + OCS entrance channel. No direct route from CH + OCS to H + CO + CS was found from our ab initio calculations. Rate theory simulations suggest that the reaction has a strong negative temperature dependence, in accordance with the barrierless addition of CH to the sulfur side of OCS. Product branching fractions were also determined from MESMER simulations over the same temperature and total density range. The product branching fraction of CO + HCS reduces from 79% at 150 K to 0.0% at 800 K, while that of HCS dissociation to H + CS + CO increases from 22% at 150 K to 100% at 800 K. The finding of CO + HCS as the major product at the low temperatures relevant to the ISM, instead of H + CS + CO, is in opposition to the current supposition used in the KIDA database and should be adapted in astrochemical models as another source of the HCS isomer.

8.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37333938

RESUMEN

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

9.
Faraday Discuss ; 245(0): 261-283, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340790

RESUMEN

The first experimental study of the low-temperature kinetics of the gas-phase reaction of NH2 with acetaldehyde (CH3CHO) has been performed. Experiments were carried out using laser-flash photolysis and laser-induced fluorescence spectroscopy to create and monitor the temporal decay of NH2 in the presence of CH3CHO. Low temperatures relevant to the interstellar medium were achieved using a pulsed Laval nozzle expansion. Rate coefficients were measured over the temperature and pressure range of 29-107 K and 1.4-28.2 × 1016 molecules per cm3, with the reaction exhibiting a negative temperature dependence and a positive pressure dependence. The yield of CH3CO from the reaction has also been determined at 67.1 and 35.0 K, by observing OH produced from the reaction of CH3CO with added O2. Ab initio calculations of the potential energy surface (PES) were combined with Rice-Rampsberger-Kessel-Marcus (RRKM) calculations to predict rate coefficients and branching ratios over a broad range of temperatures and pressures. The calculated rate coefficients were shown to be sensitive to the calculated density of states of the stationary points, which in turn are sensitive to the inclusion of hindered rotor potentials for several of the vibrational frequencies. The experimentally determined rate coefficients and yields have been used to fit the calculated PES, from which low-pressure limiting rate coefficients relevant to the ISM were determined. These have been included in a single-point dark cloud astrochemical model, in which the reaction is shown to be a potential source of gas-phase CH3CO radicals under dark cloud conditions.

10.
Phys Chem Chem Phys ; 25(11): 7719-7733, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876874

RESUMEN

Rate coefficients for the reaction of CN with CH2O were measured for the first time below room temperature in the range 32-103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis-Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10-11 cm3 molecule-1 s-1 at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CH2O reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol-1, prior to two transition states with energies of -0.62 and 3.97 kJ mol-1, leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol-1 was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this ab initio description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32-769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4-1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model.

11.
Environ Sci Technol ; 57(13): 5474-5484, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931264

RESUMEN

In the urban atmosphere, nitrogen oxide (NOx═NO + NO2)-related reactions dominate the formation of nitrous acid (HONO). Here, we validated an external cycling route of HONO and NOx, i.e., formation of HONO resulting from precursors other than NOx, in the background atmosphere. A chemical budget closure experiment of HONO and NOx was conducted at a background site on the Tibetan Plateau and provided direct evidence of the external cycling. An external daytime HONO source of 100 pptv h-1 was determined. Both soil emissions and photolysis of nitrate on ambient surfaces constituted likely candidate mechanisms characterizing this external source. The external source dominated the chemical production of NOx with HONO as an intermediate tracer. The OH production was doubled as a result of the external cycling. A high HONO/NOx ratio (0.31 ± 0.06) during the daytime was deduced as a sufficient condition for the external cycling. Literature review suggested the prevalence of high HONO/NOx ratios in various background environments, e.g., polar regions, pristine mountains, and forests. Our analysis validates the prevalence of external cycling in general background atmosphere and highlights the promotional role of external cycling regarding the atmospheric oxidative capacity.


Asunto(s)
Nitrógeno , Ácido Nitroso , Ácido Nitroso/análisis , Ácido Nitroso/química , Óxidos de Nitrógeno/análisis , Nitratos , Óxido Nítrico , Atmósfera/química
12.
Sci Adv ; 9(3): eadd6266, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652523

RESUMEN

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NOx (NO and NO2), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NOx back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O3 in both polluted and clean environments.

14.
J Phys Chem A ; 126(42): 7639-7649, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36227778

RESUMEN

The fluorescence assay by gas expansion (FAGE) method for the measurement of the methyl peroxy radical (CH3O2) using the conversion of CH3O2 into methoxy radicals (CH3O) by excess NO, followed by the detection of CH3O, has been used to study the kinetics of the self-reaction of CH3O2. Fourier transform infrared (FTIR) spectroscopy has been employed to determine the products methanol and formaldehyde of the self-reaction. The kinetics and product studies were performed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) in the temperature range 268-344 K at 1000 mbar of air. The product measurements were used to determine the branching ratio of the reaction channel forming methoxy radicals, rCH3O. A value of 0.34 ± 0.05 (errors at 2σ level) was determined for rCH3O at 295 K. The temperature dependence of rCH3O can be parametrized as rCH3O = 1/{1 + [exp(600 ± 85)/T]/(3.9 ± 1.1)}. An overall rate coefficient of the self-reaction of (2.0 ± 0.9) × 10-13 cm3 molecule-1 s-1 at 295 K was obtained by the kinetic analysis of the observed second-order decays of CH3O2. The temperature dependence of the overall rate coefficient can be characterized by koverall = (9.1 ± 5.3) × 10-14 × exp((252 ± 174)/T) cm3 molecule-1 s-1. The found values of koverall in the range 268-344 K are ∼40% lower than the values calculated using the recommendations of the Jet Propulsion Laboratory and IUPAC, which are based on the previous studies, all of them utilizing time-resolved UV-absorption spectroscopy to monitor CH3O2. A modeling study using a complex chemical mechanism to describe the reaction system showed that unaccounted secondary chemistry involving Cl species increased the values of koverall in the previous studies using flash photolysis to initiate the chemistry. The overestimation of the koverall values by the kinetic studies using molecular modulation to generate CH3O2 can be rationalized by a combination of underestimated optical absorbance of CH3O2 and unaccounted CH3O2 losses to the walls of the reaction cells employed.

16.
J Phys Chem A ; 126(39): 6984-6994, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146923

RESUMEN

The kinetics of the unimolecular decomposition of the stabilized Criegee intermediate syn-CH3CHOO has been investigated at temperatures between 297 and 331 K and pressures between 12 and 300 Torr using laser flash photolysis of CH3CHI2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. Fits to experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicate that the barrier height to decomposition is 67.2 ± 1.3 kJ mol-1 and that there is a strong tunneling component to the decomposition reaction under atmospheric conditions. At 298 K and 760 Torr, MESMER simulations indicate a rate coefficient of 150-81+176 s-1 when tunneling effects are included but only 5-2+3 s-1 when tunneling is not considered in the model. MESMER simulations were also performed for the unimolecular isomerization of the stabilized Criegee intermediate anti-CH3CHOO to methyldioxirane, indicating a rate coefficient of 54-21+34 s-1 at 298 K and 760 Torr, which is not impacted by tunneling effects. Expressions to describe the unimolecular kinetics of syn- and anti-CH3CHOO are provided for use in atmospheric models, and atmospheric implications are discussed.

17.
J Am Chem Soc ; 144(35): 15969-15976, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36001076

RESUMEN

We report a new general method for trapping short-lived radicals, based on a homolytic substitution reaction SH2'. This departure from conventional radical trapping by addition or radical-radical cross-coupling results in high sensitivity, detailed structural information, and general applicability of the new approach. The radical traps in this method are terminal alkenes possessing a nitroxide leaving group (e.g., allyl-TEMPO derivatives). The trapping process thus yields stable products which can be stored and subsequently analyzed by mass spectrometry (MS) supported by well-established techniques such as isotope exchange, tandem MS, and high-performance liquid chromatography-MS. The new method was applied to a range of model radical reactions in both liquid and gas phases including a photoredox-catalyzed thiol-ene reaction and alkene ozonolysis. An unprecedented range of radical intermediates was observed in complex reaction mixtures, offering new mechanistic insights. Gas-phase radicals can be detected at concentrations relevant to atmospheric chemistry.


Asunto(s)
Alquenos , Espectrometría de Masas en Tándem , Alquenos/química , Cromatografía Líquida de Alta Presión , Compuestos de Sulfhidrilo
18.
Phys Chem Chem Phys ; 23(35): 19415-19423, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494054

RESUMEN

The kinetics of the gas phase reaction of the Criegee intermediate CH2OO with SO2 have been studied as a function of temperature in the range 223-344 K at 85 Torr using flash photolysis of CH2I2/O2/SO2/N2 mixtures at 248 nm coupled to time-resolved broadband UV absorption spectroscopy. Measurements were performed under pseudo-first-order conditions with respect to SO2, revealing a negative temperature dependence. Analysis of experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicates that the observed temperature dependence, combined with the reported lack of a pressure dependence in the range 1.5-760 Torr, can be described by a reaction mechanism consisting of the formation of a pre-reaction complex leading to a cyclic secondary ozonide which subsequently decomposes to produce HCHO + SO3. The temperature dependence can be characterised by kCH2OO+SO2 = (3.72 ± 0.13) × 10-11 (T/298)(-2.05±0.38) cm3 molecule-1 s-1. The observed negative temperature dependence for the title reaction in conjunction with the decrease in water dimer (the main competitor for the Criegee intermediate) concentration at lower temperatures means that Criegee intermediate chemistry can play an enhanced role in SO2 oxidation in the atmosphere at lower temperatures.

19.
Environ Sci Technol ; 55(2): 842-853, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33410677

RESUMEN

The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.


Asunto(s)
Hemiterpenos , Nitratos , Aerosoles/análisis , Beijing , Butadienos/análisis , Hemiterpenos/análisis , Nitratos/análisis
20.
J Phys Chem A ; 125(1): 411-422, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33378187

RESUMEN

The OH-initiated photo-oxidation of piperazine and 1-nitropiperazine as well as the photolysis of 1-nitrosopiperazine were investigated in a large atmospheric simulation chamber. The rate coefficient for the reaction of piperazine with OH radicals was determined by the relative rate method to be kOH-piperazine = (2.8 ± 0.6) × 10-10 cm3 molecule-1 s-1 at 307 ± 2 K and 1014 ± 2 hPa. Product studies showed the piperazine + OH reaction to proceed both via C-H and N-H abstraction, resulting in the formation of 1,2,3,6-tetrahydropyrazine as the major product and in 1-nitropiperazine and 1-nitrosopiperazine as minor products. The branching in the piperazinyl radical reactions with NO, NO2, and O2 was obtained from 1-nitrosopiperazine photolysis experiments and employed analyses of the 1-nitropiperazine and 1-nitrosopiperazine temporal profiles observed during piperazine photo-oxidation. The derived initial branching between N-H and C-H abstraction by OH radicals, kN-H/(kN-H + kC-H), was 0.18 ± 0.04. All experiments were accompanied by substantial aerosol formation that was initiated by the reaction of piperazine with nitric acid. Both primary and secondary photo-oxidation products including 1-nitropiperazine and 1,4-dinitropiperazine were detected in the aerosol particles formed. Corroborating atmospheric photo-oxidation schemes for piperazine and 1-nitropiperazine were derived from M06-2X/aug-cc-pVTZ quantum chemistry calculations and master equation modeling of the pivotal reaction steps. The atmospheric chemistry of piperazine is evaluated, and a validated chemical mechanism for implementation in dispersion models is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA