Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 11(1): 608, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848679

RESUMEN

Major depressive disorder (MDD) is a prevalent psychiatric disorder, and exposure to stress is a robust risk factor for MDD. Clinical data and rodent models have indicated the negative impact of chronic exposure to stress-induced hormones like cortisol on brain volume, memory, and cell metabolism. However, the cellular and transcriptomic changes that occur in the brain after prolonged exposure to cortisol are less understood. Furthermore, the astrocyte-specific contribution to cortisol-induced neuropathology remains understudied. Here, we have developed an in vitro model of "chronic stress" using human induced pluripotent stem cell (iPSC)-derived astrocytes treated with cortisol for 7 days. Whole transcriptome sequencing reveals differentially expressed genes (DEGs) uniquely regulated in chronic cortisol compared to acute cortisol treatment. Utilizing this paradigm, we examined the stress response transcriptome of astrocytes generated from MDD patient iPSCs. The MDD-specific DEGs are related to GPCR ligand binding, synaptic signaling, and ion homeostasis. Together, these data highlight the unique role astrocytes play in the central nervous system and present interesting genes for future study into the relationship between chronic stress and MDD.


Asunto(s)
Trastorno Depresivo Mayor , Células Madre Pluripotentes Inducidas , Astrocitos , Humanos , Hidrocortisona , Ligandos , Receptores Acoplados a Proteínas G
2.
Mol Psychiatry ; 26(7): 2753-2763, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33767349

RESUMEN

The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.


Asunto(s)
Neuronas Serotoninérgicas , Serotonina , Animales , Encéfalo , Citalopram/farmacología , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
3.
Stem Cell Reports ; 16(4): 825-835, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33667413

RESUMEN

Bipolar disorder (BD) is characterized by cyclical mood shifts. Studies indicate that BD patients have a peripheral pro-inflammatory state and alterations in glial populations in the brain. We utilized an in vitro model to study inflammation-related phenotypes of astrocytes derived from induced pluripotent stem cells (iPSCs) generated from BD patients and healthy controls. BD astrocytes showed changes in transcriptome and induced a reduction in neuronal activity when co-cultured with neurons. IL-1ß-stimulated BD astrocytes displayed a unique inflammatory gene expression signature and increased secretion of IL-6. Conditioned medium from stimulated BD astrocytes reduced neuronal activity, and this effect was partially blocked by IL-6 inactivating antibody. Our results suggest that BD astrocytes are functionally less supportive of neuronal excitability and this effect is partially mediated by IL-6. We confirmed higher IL-6 in blood in a distinct cohort of BD patients, highlighting the potential role of astrocyte-mediated inflammatory signaling in BD neuropathology.


Asunto(s)
Astrocitos/patología , Trastorno Bipolar/patología , Inflamación/patología , Neuronas/patología , Técnicas de Cocultivo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interleucina-1beta/farmacología , Interleucina-6/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
4.
Mol Psychiatry ; 24(6): 808-818, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30903001

RESUMEN

Disrupted serotonergic neurotransmission has long been implicated in major depressive disorder (MDD), for which selective serotonin reuptake inhibitors (SSRIs) are the first line of treatment. However, a significant percentage of patients remain SSRI-resistant and it is unclear whether and how alterations in serotonergic neurons contribute to SSRI resistance in these patients. Induced pluripotent stem cells (iPSCs) facilitate the study of patient-specific neural subtypes that are typically inaccessible in living patients, enabling the discovery of disease-related phenotypes. In our study of a well-characterized cohort of over 800 MDD patients, we generated iPSCs and serotonergic neurons from three extreme SSRI-remitters (R) and SSRI-nonremitters (NR). We studied serotonin (5-HT) biochemistry and observed no significant differences in 5-HT release and reuptake or in genes related to 5-HT biochemistry. NR patient-derived serotonergic neurons exhibited altered neurite growth and morphology downstream of lowered expression of key Protocadherin alpha genes as compared to healthy controls and Rs. Furthermore, knockdown of Protocadherin alpha genes directly regulated iPSC-derived neurite length and morphology. Our results suggest that intrinsic differences in serotonergic neuron morphology and the resulting circuitry may contribute to SSRI resistance in MDD patients.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Serotonina/metabolismo , Adulto , Antidepresivos/uso terapéutico , Estudios de Cohortes , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Persona de Mediana Edad , Neuronas , Neuronas Serotoninérgicas/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transmisión Sináptica
5.
Nature ; 567(7749): 535-539, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867594

RESUMEN

Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Serotonina/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Diferenciación Celular , Línea Celular , Femenino , Proteínas de Unión al GTP/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Neuronas Serotoninérgicas/citología , Transglutaminasas/metabolismo
6.
Mol Psychiatry ; 24(6): 795-807, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30700803

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressants. They regulate serotonergic neurotransmission, but it remains unclear how altered serotonergic neurotransmission may contribute to the SSRI resistance observed in approximately 30% of major depressive disorder (MDD) patients. Patient stratification based on pharmacological responsiveness and the use of patient-derived neurons may make possible the discovery of disease-relevant neural phenotypes. In our study from a large cohort of well-characterized MDD patients, we have generated induced pluripotent stem cells (iPSCs) from SSRI-remitters and SSRI-nonremitters. We studied serotonergic neurotransmission in patient forebrain neurons in vitro and observed that nonremitter patient-derived neurons displayed serotonin-induced hyperactivity downstream of upregulated excitatory serotonergic receptors, in contrast to what is seen in healthy and remitter patient-derived neurons. Our data suggest that postsynaptic forebrain hyperactivity downstream of SSRI treatment may play a role in SSRI resistance in MDD.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Serotonina/metabolismo , Adulto , Acatisia Inducida por Medicamentos/fisiopatología , Antidepresivos/uso terapéutico , Estudios de Cohortes , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Persona de Mediana Edad , Neuronas , Agitación Psicomotora/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA