Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Clin Microbiol Infect Dis ; 37(1): 117-125, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28971266

RESUMEN

Early detection of resistance in sepsis due to Gram-negative organisms may lead to improved outcomes by reducing the time to effective antibiotic therapy. Traditional methods of resistance detection require incubation times of 18 to 48 h to detect resistance. We have utilised automated specimen processing, digital imaging and zone size measurements in conjunction with direct disc susceptibility testing to develop a method for the rapid screening of Gram-negative blood culture isolates for resistance. Positive clinical blood cultures with Gram-negative organisms were prospectively identified and additional resistant mock specimens were prepared. Broth was plated and antibiotic-impregnated discs (ampicillin, ceftriaxone, piperacillin-tazobactam, meropenem, ciprofloxacin, gentamicin) were added. Plates were incubated, digitally imaged and zone sizes were measured using the BD Kiestra WorkCell laboratory automation system. Minimum, clinically useful, incubation times and optimised zone size cut-offs for resistance detection were determined. We included 187 blood cultures in the study. At 5 h of incubation, > 90% of plates yielded interpretable results. Using optimised zone size cut-offs, the sensitivity for resistance detection ranged from 87 to 100%, while the specificity ranged from 84.7 to 100%. The sensitivity and specificity for piperacillin-tazobactam resistance detection was consistently worse than for the other agents. Automated direct disc susceptibility screening is a rapid and sensitive tool for resistance detection in Gram-negative isolates from blood cultures for most of the agents tested.


Asunto(s)
Antibacterianos/farmacología , Bacteriemia/diagnóstico , Pruebas Antimicrobianas de Difusión por Disco/métodos , Bacterias Gramnegativas/efectos de los fármacos , Ampicilina/farmacología , Bacteriemia/microbiología , Cultivo de Sangre/métodos , Ceftriaxona/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/fisiología , Gentamicinas/farmacología , Bacterias Gramnegativas/aislamiento & purificación , Humanos , Meropenem , Ácido Penicilánico/análogos & derivados , Ácido Penicilánico/farmacología , Piperacilina/farmacología , Combinación Piperacilina y Tazobactam , Tienamicinas/farmacología
2.
Sep Sci Technol ; 52(2): 276-286, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-37830059

RESUMEN

Delivering protein chemotherapeutics into cancer cells is a challenge. Fusing the protein to an arginine-rich cell-penetrating peptide offers a possible solution. The goal of this work was to develop an affinity membrane for purification of Arg-rich fusion proteins via capture chromatography. Membranes were prepared by grafting polymers bearing diethyl-4-aminobenzyl phosphonate (D4ABP) ligands from macroporous membrane supports. Incorporation of D4ABP was studied by infrared spectroscopy and energy dispersive spectroscopy. Protein binding capacities of 3 mg lysozyme/mL were measured. While further studies are required to evaluate binding kinetics and Arg-selectivity, achieving higher protein binding capacity is needed before investment in such studies.

3.
J Appl Polym Sci ; 132(21): 1-7, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25866416

RESUMEN

This work details the design and testing of affinity membrane adsorbers for lectin purifications that incorporate glucose-containing glycopolymers. It is the selective interaction between the sugar residues of the glycopolymer and the complementary carbohydrate-binding domain of the lectin that provides the basis for the isolation and purification of lectins from complex biological media. The design approach used in these studies was to graft glycopolymer 'tentacles' from macroporous regenerated cellulose membranes by atom transfer radical polymerization. As shown in earlier studies, this design approach can be used to prepare high-productivity membrane adsorbers. The model lectin, concanavalin A (conA), was used to evaluate membrane performance in bind-and-elute purification, using a low molecular weight sugar for elution. The membrane capacity for binding conA was measured at equilibrium and under dynamic conditions using flow rates of 0.1 and 1.0 mL/min. The first Damkohler number was estimated to relate the adsorption rate to the convective mass transport rate through the membrane bed. It was used to assess whether adsorption kinetics or mass transport contributed the primary limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherent rate of adsorption of conA onto the glycopolymer.

4.
J Memb Sci ; 432-424: 43-52, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23175597

RESUMEN

This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 µm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...