Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ASAIO J ; 69(6): 569-575, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37000917

RESUMEN

Nonsurgical bleeding occurs in a significant proportion of patients implanted with continuous-flow ventricular assist devices (CF-VADs) and is associated with nonphysiologic flow with diminished pulsatility. An in vitro vascular pulse perfusion model seeded with adult human aortic endothelial cells (HAECs) was used to identify biomarkers sensitive to changes in pulsatility. Diminished pulsatility resulted in an ~45% decrease in von Willebrand factor (vWF) levels from 9.80 to 5.32 ng/ml (n = 5, p < 0.05) and a threefold increase in angiopoietin-2 (ANGPT-2) levels from 775.29 to 2471.93 pg/ml (n = 5, p < 0.05) in cultured HAECs. These changes are in agreement with evaluation of patient blood samples obtained pre-CF-VAD implant and 30-day postimplant: a decrease in plasma vWF level by 50% from ~45.59 to ~22.49 µg/ml (n = 15, p < 0.01) and a 64% increase in plasma ANGPT-2 level from 7,073 to 11,615 pg/ml (n = 8, p < 0.05). This study identified vWF and ANGPT-2 as highly sensitive to changes in pulsatility, in addition to interleukin-6 (IL-6), IL-8, and tumor necrosis-α (TNF-α). These biomarkers may help determine the optimal level of pulsatility and help identify patients at high risk of nonsurgical bleeding.


Asunto(s)
Corazón Auxiliar , Enfermedades de von Willebrand , Adulto , Humanos , Factor de von Willebrand , Células Endoteliales , Corazón Auxiliar/efectos adversos , Angiopoyetina 2 , Hemorragia/etiología , Biomarcadores , Enfermedades de von Willebrand/etiología
2.
Artif Organs ; 47(4): 640-648, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36404709

RESUMEN

BACKGROUND: Patients on continuous flow ventricular assist devices (CF-VADs) are at high risk for the development of Acquired von-Willebrand Syndrome (AVWS) and non-surgical bleeding. von Willebrand Factor (vWF) plays an essential role in maintaining hemostasis via platelet binding to the damaged endothelium to facilitate coagulation. In CF-VAD patients, degradation of vWF into low MW multimers that are inefficient in facilitating coagulation occurs and has been primarily attributed to the supraphysiological shear stress associated with the CF-VAD impeller. METHODS: In this review, we evaluate information from the literature regarding the unraveling behavior of surface-immobilized vWF under pulsatile and continuous flow pertaining to: (A) the process of arterial endothelial vWF production and release into circulation, (B) the critical shear stress required to unravel surface bound versus soluble vWF which leads to degradation, and (C) the role of pulsatility in on the production and degradation of vWF. RESULTS AND CONCLUSION: Taken together, these data suggests that the loss of pulsatility and its impact on arterial endothelial cells plays an important role in the production, release, unraveling, and proteolytic degradation of vWF into low MW multimers, contributing to the development of AVWS. Restoration of pulsatility can potentially mitigate this issue by preventing AVWS and minimizing the risk of non-surgical bleeding.


Asunto(s)
Corazón Auxiliar , Enfermedades de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Corazón Auxiliar/efectos adversos , Células Endoteliales/metabolismo , Hemorragia , Endotelio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...