Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Optica ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-36578655

RESUMEN

We present high-reflectivity substrate-transferred single-crystal GaAs/AlGaAs interference coatings at a center wavelength of 4.54 µm with record-low excess optical loss below 10 parts per million. These high-performance mirrors are realized via a novel microfabrication process that differs significantly from the production of amorphous multilayers generated via physical vapor deposition processes. This new process enables reduced scatter loss due to the low surface and interfacial roughness, while low background doping in epitaxial growth ensures strongly reduced absorption. We report on a suite of optical measurements, including cavity ring-down, transmittance spectroscopy, and direct absorption tests to reveal the optical losses for a set of prototype mirrors. In the course of these measurements, we observe a unique polarization-orientation-dependent loss mechanism which we attribute to elastic anisotropy of these strained epitaxial multilayers. A future increase in layer count and a corresponding reduction of transmittance will enable optical resonators with a finesse in excess of 100 000 in the mid-infrared spectral region, allowing for advances in high resolution spectroscopy, narrow-linewidth laser stabilization, and ultrasensitive measurements of various light-matter interactions.

2.
Opt Express ; 27(14): 19141-19149, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503677

RESUMEN

A cavity ringdown system for probing the spatial variation of optical loss across high-reflectivity mirrors is described. This system is employed to examine substrate-transferred crystalline supermirrors and to quantify the effect of manufacturing process imperfections. Excellent agreement is observed between the ringdown-generated spatial measurements and differential interference contrast microscopy images. A 2-mm diameter ringdown scan in the center of a crystalline supermirror reveals highly uniform coating properties with excess loss variations below 1 ppm.

3.
Science ; 354(6311): 444-448, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789837

RESUMEN

The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

4.
Opt Express ; 19(20): 19142-9, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21996856

RESUMEN

In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies.


Asunto(s)
Amplificadores Electrónicos , Tecnología de Fibra Óptica/instrumentación , Láseres de Estado Sólido , Fotones , Xenón , Diseño de Equipo
5.
Opt Express ; 19(2): 1395-407, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21263681

RESUMEN

We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 µJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 µm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 µm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several µJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.


Asunto(s)
Amplificadores Electrónicos , Tecnología de Fibra Óptica/instrumentación , Láseres de Estado Sólido , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
6.
Opt Express ; 18(18): 19201-8, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20940816

RESUMEN

Yb:YCOB is a very attractive material for femtosecond pulse generation given its broad emission bandwidth. We demonstrate continuous-wave power scaling in the thin disk geometry to the 100-W level with a 40% optical-to-optical efficiency in multi-mode operation. Furthermore, we present initial modelocking results in the thin disk geometry, achieving pulse durations as short as 270 fs. The modelocked average power is, however, limited to less than 5 W because of transverse mode degradation. This is caused by anisotropic thermal aberrations in the 15% Yb-doped thin disks which were 300 to 400 µm thick. This result confirms the potential of Yb:YCOB to generate short femtosecond pulses in the thin disk geometry but also makes clear that significantly thinner disks are required to overcome the thermal limitations for high power operation.

7.
Opt Lett ; 34(18): 2823-5, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19756117

RESUMEN

We present successful power-scaling of an Yb:Lu(2)O(3) thin disk laser to record high-power levels both in cw and mode-locked operation. In a simple multimode resonator we achieved 149 W of output power in cw operation with 73% optical-to-optical efficiency (eta(opt)). Building an 81 MHz fundamental transverse mode resonator with dispersion compensation and a semiconductor saturable absorber mirror (SESAM) for passive mode locking we achieved 63 W of average power in 535 fs pulses (eta(opt)=35%). The output beam is nearly diffraction limited (M(2)<1.2). The 0.78 microJ pulses with a peak power of 1.28 MW had a central wavelength of 1034 nm and were close to the Fourier transform limit. With an SESAM with a larger modulation depth we obtained pulses as short as 329 fs at 40 W average power corresponding to a pulse energy of 0.49 microJ and a peak power of 1.32 MW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...