Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 34(7): 1151-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25749737

RESUMEN

KEY MESSAGE: Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.


Asunto(s)
Genes de Plantas , Proteínas Mitocondriales/genética , Olea/enzimología , Olea/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Alelos , Secuencia de Bases , Secuencia Conservada/genética , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genómica , Genotipo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética
2.
Tissue Cell ; 42(4): 211-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20483444

RESUMEN

Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Separación Celular/métodos , Células Madre Multipotentes/citología , Animales , Biomarcadores/metabolismo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Madre Multipotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/citología , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...