Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(1): 132-144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742309

RESUMEN

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Asunto(s)
Bosques , Micorrizas , Nitrógeno , Nutrientes , Fósforo , Árboles , Clima Tropical , Fósforo/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Monoéster Fosfórico Hidrolasas/metabolismo , Panamá
3.
Ecology ; 103(11): e3789, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35718750

RESUMEN

Nitrogen (N) and phosphorus (P) are crucial nutrients for regulating plant growth. The classic growth rate hypothesis (GRH) proposes that fast-growing organisms have lower N:P ratios, and it is promising to predict net primary productivity (NPP) using the leaf N:P ratio at the community level (N:PCom ). However, whether leaf N:P ratio can predict NPP in natural ecosystems on a large scale remains nebulous. Here, we systematically calculated leaf N:PCom (community biomass-weighted mean and species arithmetic mean) using the consistently measured data of 2192 plant species-site combinations and productivity (biomass-based aboveground NPP and flux-based NPP) in 66 natural ecosystems in China. Unexpectedly, leaf N:PCom hardly predicted productivity in natural ecosystems due to their weak correlation, although significantly negative or positive relationships across different ecosystems were observed. The ambiguous relationship between leaf N:P and species dominance reflected a luxury consumption of N and P in turnover and structure in natural communities, unlike what GRH suggests. Climate, soil, and leaf nutrients (rather than N:P) influenced productivity, which highlighted the importance of external environment and nutrient constrains. Our findings pose a major challenge for leaf N:PCom as a direct parameter in productivity models and further question the direct application of classic hypotheses in short-term experiments or model species to long-term and complex natural ecosystems.


Asunto(s)
Ecosistema , Fósforo , Fósforo/análisis , Nitrógeno/análisis , Suelo/química , Hojas de la Planta/química , Biomasa
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35165205

RESUMEN

Recent findings point to plant root traits as potentially important for shaping the boundaries of biomes and for maintaining the plant communities within. We examined two hypotheses: 1) Thin-rooted plant strategies might be favored in biomes with low soil resources; and 2) these strategies may act, along with fire, to maintain the sharp boundary between the Fynbos and Afrotemperate Forest biomes in South Africa. These biomes differ in biodiversity, plant traits, and physiognomy, yet exist as alternative stable states on the same geological substrate and in the same climate conditions. We conducted a 4-y field experiment to examine the ability of Forest species to invade the Fynbos as a function of growth-limiting nutrients and belowground plant-plant competition. Our results support both hypotheses: First, we found marked biome differences in root traits, with Fynbos species exhibiting the thinnest roots reported from any biome worldwide. Second, our field manipulation demonstrated that intense belowground competition inhibits the ability of Forest species to invade Fynbos. Nitrogen was unexpectedly the resource that determined competitive outcome, despite the long-standing expectation that Fynbos is severely phosphorus constrained. These findings identify a trait-by-resource feedback mechanism, in which most species possess adaptive traits that modify soil resources in favor of their own survival while deterring invading species. Our findings challenge the long-held notion that biome boundaries depend primarily on external abiotic constraints and, instead, identify an internal biotic mechanism-a selective feedback among traits, plant-plant competition, and ecosystem conditions-that, along with contrasting fire regime, can act to maintain biome boundaries.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/fisiología , Sudáfrica
5.
Diabetes Metab Syndr Obes ; 14: 4641-4653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858042

RESUMEN

BACKGROUND: Hypertension (HT) is an idiopathic disease with severe complications and a high incidence of global mortality. Although the disease shares characteristic features with diabetes and obesity, the complex interplay of endogenous and environmental factors is not well characterized. The oral microbiome has recently been studied to better understand the role of commensal microorganisms in metabolic disorders, including HT, although its role in disease etiology is unclear. METHODS: To bridge this gap, we compared the oral microbiome and clinical chemistry of adult subjects enrolled at Qatar Biobank. Clinical chemistry was performed using Roche Cobas-6000 analyzer. Saliva samples were subjected to 16S rRNA sequencing using Illumina MiSeq platform. Cross-gender comparisons were made between control (males/females) (C-M and C-F) and HT (HT-M and HT-F) groups. RESULTS: The HT groups had higher (p ≤ 0.05) BMI, plasma glucose, insulin, C-peptide, and alkaline phosphatase (ALP) concentrations. Triglycerides, cholesterol, LDL-cholesterol, and sodium ions were similar among the groups. The microbiome was predominantly occupied by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Firmicutes were higher (p ≤ 0.05) in the HT groups, whereas Proteobacteria was only higher in the C-F group. Prevotella and Veillonella were significantly higher in the HT groups and exhibited a positive correlation with blood pressure and hyperglycemia. In contrast to other studies, the mathematical summation of priori-select microbes reveals that nitrate-reducing microbes were higher in the HT groups compared with the controls. CONCLUSION: In conclusion, these observations suggest a strong association of HT with microbial dysbiosis, where microbial species other than nitrate-reducing microbes contribute to blood pressure regulation. The findings affirm plausible microbial signatures of hypertension and suggest manipulating these microbes as a novel treatment modality. Future experiments are warranted for the mechanistic investigation of hypertension metagenomics and microbial activity.

6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836596

RESUMEN

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Asunto(s)
Fabaceae/microbiología , Bosques , Microbiota/fisiología , Minerales/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/metabolismo , Biomasa , Carbono/análisis , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Compuestos Férricos/metabolismo , Concentración de Iones de Hidrógeno , Microbiota/genética , Minerales/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno , Nutrientes/análisis , Panamá , Fósforo/metabolismo , Silicatos/análisis , Silicatos/metabolismo , Suelo/química , Microbiología del Suelo , Simbiosis , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/microbiología
7.
Nat Ecol Evol ; 4(7): 993, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32457451

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 10(1): 5637, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822758

RESUMEN

A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon-nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha-1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change.

9.
Ecology ; 100(9): e02795, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301692

RESUMEN

Biological nitrogen fixation is critical for the nitrogen cycle of tropical forests, yet we know little about the factors that control the microbial nitrogen fixers that colonize the microbiome of leaves and branches that make up a forest canopy. Forest canopies are especially prone to nutrient limitation because they are (1) disconnected from soil nutrient pools and (2) often subject to leaching. Earlier studies have suggested a role of phosphorus and molybdenum in controlling biological N-fixation rates, but experimental confirmation has hitherto been unavailable. Here we present the results of a manipulation of canopy nutrient availability. Our findings demonstrate a primary role of phosphorus in constraining overall N fixation by canopy cyanobacteria, but also a secondary role of molybdenum in determining per-cell fixation rates. A conservative evaluation suggests that canopy fixation can contribute to significant N fluxes at the ecosystem level, especially as bursts following atmospheric inputs of nutrient-rich dust.


Asunto(s)
Microbiota , Fijación del Nitrógeno , Ecosistema , Bosques , Molibdeno , Nitrógeno , Fósforo , Suelo , Árboles , Clima Tropical
10.
Nature ; 570(7759): E25, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31101908

RESUMEN

We thank reader Joseph Craine for pointing out three inadvertent errors in this Letter. First, 4 of the 71 divergence dates extracted from ref. 1 of this Amendment and used in Fig. 1b of the original Letter were overestimated. The correct values are 45 million years ago (Ma) for Apocynaceae, 51 Ma for Anacardiaceae, 40 Ma for Primulaceae, and 53 Ma for Amaryllidaceae. These errors had little influence on the overall trend of Fig. 1b (r2 is now 0.48 rather than 0.54, with no change to P < 0.001) and do not change our conclusion and inferences. Second, we neglected to note that since refs. 1 and 2 of this Amendment considered only angiosperms, our Fig. 1b necessarily did not include gymnosperm taxa. The in-text reference to Fig. 1b should therefore read "all major angiosperm plant families in our dataset" rather than "all major vascular plant families in our dataset". Third, in Fig. 1c the trait value of mycorrhizal colonization for Machilus kwangtungensis was erroneously given the value 0.25 instead of 1.0. This error had little influence on the overall Fig. 1c trend, reducing r2 from 0.64 to 0.63 (with no change to P < 0.001).

11.
Ecology ; 100(7): e02735, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30991444

RESUMEN

Fire is a critical force in structuring ecosystems, but it also removes substantial amounts of nitrogen (N), which can limit plant growth. Biological N fixation (BNF) may alleviate fire-induced N deficiencies that inhibit ecosystem recovery, yet if and how BNF achieves this under frequent fire is unclear. This problem is further complicated in the context of modern human influences (such as land-use history and atmospheric N deposition), which may confound the relationship between fire and fixation. Here, we investigate whether BNF supplies the N necessary to replace fire-induced N losses in restored longleaf pine savannas, and, if so, what factors control fixation. We established 54 1-ha plots of longleaf pine capturing 227 yr of forest recovery and a broad gradient of fire return interval (1.5-20 yr) at two sites in the southeastern United States. We quantified N fixation from three functional groups (herbaceous legumes, soil crusts, and asymbiotic N fixing bacteria), N losses from individual fire events and ecosystem dynamics of N supply and demand. We found that BNF rates were low but sustained over stand age but were substantially below estimated rates of atmospheric N deposition. While fire temporarily stimulated BNF from herbaceous legumes, neither BNF nor atmospheric N deposition were sufficient to balance N losses from fire and soil N stocks declined over stand age. However, rates of N mineralization were surprisingly high and tree productivity was unrelated to N availability, questioning the importance of N limitation in these temperate savannas. While it is possible that progressive N losses signal a decline in ecosystem resiliency, N enrichment from multiple land-use transitions and anthropogenic N deposition may suppress rates of BNF or diminish its importance as a long-term N balancing source in these pyrogenic ecosystems. In this case, fire may be acting as relief mechanism, critical for returning the modern longleaf pine landscape to its historical oligotrophic condition.


Asunto(s)
Incendios , Fijación del Nitrógeno , Ecosistema , Pradera , Nitrógeno , Suelo
12.
Nat Ecol Evol ; 3(2): 239-250, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664701

RESUMEN

One of the most distinct but unresolved global patterns is the apparent variation in plant-symbiont nutrient strategies across biomes. This pattern is central to our understanding of plant-soil-nutrient feedbacks in the land biosphere, which, in turn, are essential for our ability to predict the future dynamics of the Earth system. Here, we present an evolution-based trait-modelling approach for resolving (1) the organization of plant-symbiont relationships across biomes worldwide and (2) the emergent consequences for plant community composition and land biogeochemical cycles. Using game theory, we allow plants to use different belowground strategies to acquire nutrients and compete within local plant-soil-nutrient cycles in boreal, temperate and tropical biomes. The evolutionarily stable strategies that emerge from this analysis allow us to predict the distribution of belowground symbioses worldwide, the sequence and timing of plant succession, the bistability of ecto- versus arbuscular mycorrhizae in temperate and tropical forests, and major differences in the land carbon and nutrient cycles across biomes. Our findings imply that belowground symbioses have been central to the evolutionary assembly of plant communities and plant-nutrient feedbacks at the scale of land biomes. We conclude that complex global patterns emerge from local between-organism interactions in the context of Darwinian natural selection and evolution, and that the underlying dynamics can be mechanistically probed by our low-dimensional modelling approach.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Plantas/microbiología , Simbiosis , Evolución Biológica , Teoría del Juego , Rasgos de la Historia de Vida , Modelos Biológicos
13.
Ecol Lett ; 21(10): 1486-1495, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30073753

RESUMEN

A fundamental biogeochemical paradox is that nitrogen-rich tropical forests contain abundant nitrogen-fixing trees, which support a globally significant tropical carbon sink. One explanation for this pattern holds that nitrogen-fixing trees can overcome phosphorus limitation in tropical forests by synthesizing phosphatase enzymes to acquire soil organic phosphorus, but empirical evidence remains scarce. We evaluated whether nitrogen fixation and phosphatase activity are linked across 97 trees from seven species, and tested two hypotheses for explaining investment in nutrient strategies: trading nitrogen-for-phosphorus or balancing nutrient demand. Both strategies varied across species but were not explained by nitrogen-for-phosphorus trading or nutrient balance. This indicates that (1) studies of these nutrient strategies require broad sampling within and across species, (2) factors other than nutrient trading must be invoked to resolve the paradox of tropical nitrogen fixation, and (3) nitrogen-fixing trees cannot provide a positive nitrogen-phosphorus-carbon feedback to alleviate nutrient limitation of the tropical carbon sink.


Asunto(s)
Fijación del Nitrógeno , Bosque Lluvioso , Árboles , Nitrógeno , Nutrientes , Monoéster Fosfórico Hidrolasas , Fósforo , Suelo , Especificidad de la Especie , Clima Tropical
14.
Oecologia ; 187(1): 281-290, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29603096

RESUMEN

Longleaf pine savannas house a diverse community of herbaceous N2-fixing legume species that have the potential to replenish nitrogen (N) losses from fire. Whether legumes fill this role depends on the factors that regulate symbiotic fixation, including soil nutrients such as phosphorus (P) and molybdenum (Mo) and the growth and fixation strategies of different species. In greenhouse experiments, we determined how these factors influence fixation for seven species of legumes grown in pure field soil from two different regions of the southeastern US longleaf pine ecosystem. We first added P and Mo individually and in combination, and found that P alone constrained fixation. Phosphorus primarily influenced fixation by regulating legume growth. Second, we added N to plants and found that species either downregulated fixation (facultative strategy) or maintained fixation at a constant rate (obligate strategy). Species varied nearly fourfold in fixation rate, reflecting differences in growth rate, taxonomy and fixation strategy. However, fixation responded strongly to P addition across all species in our study, suggesting that the P cycle regulates N inputs by herbaceous legumes.


Asunto(s)
Fabaceae , Fósforo , Ecosistema , Pradera , Nitrógeno , Fijación del Nitrógeno
15.
Nature ; 556(7699): 135, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29620725

RESUMEN

This corrects the article DOI: 10.1038/nature25783.

16.
Nature ; 555(7694): 94-97, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466331

RESUMEN

Plant roots have greatly diversified in form and function since the emergence of the first land plants, but the global organization of functional traits in roots remains poorly understood. Here we analyse a global dataset of 10 functionally important root traits in metabolically active first-order roots, collected from 369 species distributed across the natural plant communities of 7 biomes. Our results identify a high degree of organization of root traits across species and biomes, and reveal a pattern that differs from expectations based on previous studies of leaf traits. Root diameter exerts the strongest influence on root trait variation across plant species, growth forms and biomes. Our analysis suggests that plants have evolved thinner roots since they first emerged in land ecosystems, which has enabled them to markedly improve their efficiency of soil exploration per unit of carbon invested and to reduce their dependence on symbiotic mycorrhizal fungi. We also found that diversity in root morphological traits is greatest in the tropics, where plant diversity is highest and many ancestral phylogenetic groups are preserved. Diversity in root morphology declines sharply across the sequence of tropical, temperate and desert biomes, presumably owing to changes in resource supply caused by seasonally inhospitable abiotic conditions. Our results suggest that root traits have evolved along a spectrum bounded by two contrasting strategies of root life: an ancestral 'conservative' strategy in which plants with thick roots depend on symbiosis with mycorrhizal fungi for soil resources and a more-derived 'opportunistic' strategy in which thin roots enable plants to more efficiently leverage photosynthetic carbon for soil exploration. These findings imply that innovations of belowground traits have had an important role in preparing plants to colonize new habitats, and in generating biodiversity within and across biomes.


Asunto(s)
Evolución Biológica , Ecosistema , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Biodiversidad , Carbono/metabolismo , Bases de Datos Factuales , Clima Desértico , Micorrizas/fisiología , Fotosíntesis , Filogenia , Raíces de Plantas/clasificación , Raíces de Plantas/microbiología , Estaciones del Año , Suelo/química , Especificidad de la Especie , Simbiosis , Clima Tropical
17.
Ecology ; 98(12): 3127-3140, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28976548

RESUMEN

Symbiotic nitrogen (N) fixation provides a dominant source of new N to the terrestrial biosphere, yet in many cases the abundance of N-fixing trees appears paradoxical. N-fixing trees, which should be favored when N is limiting, are rare in higher latitude forests where N limitation is common, but are abundant in many lower latitude forests where N limitation is rare. Here, we develop a graphical and mathematical model to resolve the paradox. We use the model to demonstrate that N fixation is not necessarily cost effective under all degrees of N limitation, as intuition suggests. Rather, N fixation is only cost effective when N limitation is sufficiently severe. This general finding, specific versions of which have also emerged from other models, would explain sustained moderate N limitation because N-fixing trees would either turn N fixation off or be outcompeted under moderate N limitation. From this finding, four general hypothesis classes emerge to resolve the apparent paradox of N limitation and N-fixing tree abundance across latitude. The first hypothesis is that N limitation is less common at higher latitudes. This hypothesis contradicts prevailing evidence, so is unlikely, but the following three hypotheses all seem likely. The second hypothesis, which is new, is that even if N limitation is more common at higher latitudes, more severe N limitation might be more common at lower latitudes because of the capacity for higher N demand. Third, N fixation might be cost effective under milder N limitation at lower latitudes but only under more severe N limitation at higher latitudes. This third hypothesis class generalizes previous hypotheses and suggests new specific hypotheses. For example, greater trade-offs between N fixation and N use efficiency, soil N uptake, or plant turnover at higher compared to lower latitudes would make N fixation cost effective only under more severe N limitation at higher latitudes. Fourth, N-fixing trees might adjust N fixation more at lower than at higher latitudes. This framework provides new hypotheses to explain the latitudinal abundance distribution of N-fixing trees, and also provides a new way to visualize them. Therefore, it can help explain the seemingly paradoxical persistence of N limitation in many higher latitude forests.


Asunto(s)
Ecosistema , Fijación del Nitrógeno , Árboles/fisiología , Bosques , Nitrógeno , Suelo , Simbiosis
18.
New Phytol ; 216(4): 1151-1160, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28840610

RESUMEN

Savanna vegetation is variable, and predicting how water, nutrients, and chronic disturbances interact to determine vegetation structure in savannas represents a challenge. Here, we examined in situ interactions among rainfall, soils, grasses, fire, and elephants that determine tree layer responses to resource gradients in Kruger National Park in South Africa, using 363 long-term monitoring sites throughout the park. Grass biomass increased with rainfall and on nutrient-rich clay soils. Fire frequency, too, increased with rainfall. Conversely, tree density was greater on sandier soils, where water infiltrates more readily, and in areas where the maximum interval between fires was longer, irrespective of average fire frequency. Elephant density responded positively to tree density, but did not contribute significantly to decreasing tree density. Savanna vegetation structure was reasonably predictable, via a combination of rainfall (favoring grasses), soil (sandy soils favoring trees), and fire (limiting trees until a longer interval between fires allows them to establish). Explicit consideration of bottom-up and top-down interactions may thus contribute to a predictive understanding of savanna vegetation heterogeneity.


Asunto(s)
Incendios , Pradera , Suelo , Biomasa , Poaceae , Sudáfrica , Árboles
19.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814651

RESUMEN

Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation.


Asunto(s)
Evolución Biológica , Fabaceae/fisiología , Bosques , Fijación del Nitrógeno , Clima Tropical , Atmósfera/química , Dióxido de Carbono/química , Fabaceae/clasificación , Nitrógeno/química , Filogenia , Suelo/química , Árboles/clasificación , Árboles/fisiología
20.
Ecology ; 97(9): 2177-2183, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27859089

RESUMEN

Tropical savannas are hypothesized to be hot spots of nitrogen-fixer diversity and activity because of the high disturbance and low nitrogen characteristic of savanna landscapes. Here we compare the abundances of nitrogen-fixing and non-fixing trees in both tropical savannas and tropical forests under climatically equivalent conditions, using plant inventory studies across 566 plots in South America and Africa. A single factor, aridity, explained 19-54% of the variance in fixer abundance, and unexpectedly was more important than fire frequency, biome, and continent. Nitrogen fixers were more abundant in arid environments; as a result, African savannas, which tend to be drier, were richer in nitrogen fixers than South American savannas. Fixer abundance converged on similar levels in forests in both continents. We conclude that climate plays a greater role than fire in determining the distribution of nitrogen fixers across tropical savanna and forest biomes.


Asunto(s)
Ecosistema , Pradera , Ciclo del Nitrógeno , Nitrógeno/metabolismo , África , Monitoreo del Ambiente , Incendios , Bosques , Nitrógeno/análisis , América del Sur , Árboles , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...