Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis ; 24(5): 6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727688

RESUMEN

Prior research has demonstrated high levels of color constancy in real-world scenarios featuring single light sources, extensive fields of view, and prolonged adaptation periods. However, exploring the specific cues humans rely on becomes challenging, if not unfeasible, with actual objects and lighting conditions. To circumvent these obstacles, we employed virtual reality technology to craft immersive, realistic settings that can be manipulated in real time. We designed forest and office scenes illuminated by five colors. Participants selected a test object most resembling a previously shown achromatic reference. To study color constancy mechanisms, we modified scenes to neutralize three contributors: local surround (placing a uniform-colored leaf under test objects), maximum flux (keeping the brightest object constant), and spatial mean (maintaining a neutral average light reflectance), employing two methods for the latter: changing object reflectances or introducing new elements. We found that color constancy was high in conditions with all cues present, aligning with past research. However, removing individual cues led to varied impacts on constancy. Local surrounds significantly reduced performance, especially under green illumination, showing strong interaction between greenish light and rose-colored contexts. In contrast, the maximum flux mechanism barely affected performance, challenging assumptions used in white balancing algorithms. The spatial mean experiment showed disparate effects: Adding objects slightly impacted performance, while changing reflectances nearly eliminated constancy, suggesting human color constancy relies more on scene interpretation than pixel-based calculations.


Asunto(s)
Percepción de Color , Señales (Psicología) , Iluminación , Estimulación Luminosa , Realidad Virtual , Humanos , Percepción de Color/fisiología , Iluminación/métodos , Adulto , Masculino , Femenino , Estimulación Luminosa/métodos , Adulto Joven
2.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): A190-A198, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37133037

RESUMEN

The distribution of colors across a surface depends on the interaction between its surface properties, its shape, and the lighting environment. Shading, chroma, and lightness are positively correlated: points on the object that have high luminance also have high chroma. Saturation, typically defined as the ratio of chroma to lightness, is therefore relatively constant across an object. Here we explored to what extent this relationship affects perceived saturation of an object. Using images of hyperspectral fruit and rendered matte objects, we manipulated the lightness-chroma correlation (positive or negative) and asked observers which of two objects appeared more saturated. Despite the negative-correlation stimulus having greater mean and maximum chroma, lightness, and saturation than the positive, observers overwhelmingly chose the positive as more saturated. This suggests that simple colorimetric statistics do not accurately represent perceived saturation of objects-observers likely base their judgments on interpretations about the cause of the color distribution.

3.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): B152-B164, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29603969

RESUMEN

The visual system has separable visual encoding for luminance and for contrast modulation [J. Vis.8(1), B152 (2008)1534-736210.1167/8.6.1]; the two dimensions can be represented with a luminance contrast versus luminance plane. Here we use a contrast asynchrony paradigm to explore contextual effects on luminance contrast modulation: two identical rectangular bars (0.5°×2.5°) have luminance levels that modulate at 2 Hz; when one bar is placed on a bright field and the other bar on a dark field, observers perceive the bars modulating in antiphase with each other and yet becoming light and dark at the same time. The antiphase perception corresponds to the change in contrast between the bars and their surrounds (a change along the contrast axis of the plane); the in-phase perception corresponds to the luminance modulation (a change along the luminance axis of the plane). We examine spatial interaction by adding bright rectangular (0.5°×2.5°) flankers on both sides of the dark-field bar and dark flankers on both sides of the bright-field bar. Remarkably, flankers produce an in-phase appearance when separated from the bars by between 2' and 4' of visual angle, and produce antiphase appearance when they directly adjoin the bars or are separated by more than 8'. To estimate the dimensions of the spatial interaction, we parametrically adjust the size of the gap between bars and flankers and the length of the flankers. We attempt to account for the results with models based on rectified difference of Gaussian filters and with rectified oriented difference of Gaussian filters. The models can account for the results when the flankers are the same height as bars, but are unable to account for the effects of increasing the flanker length. The models therefore suggest that the spatial interaction across distances requires more complex interactions of contrast filters.

4.
Iperception ; 9(1): 2041669517749601, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344332

RESUMEN

Kitaoka's Tomato is a color illusion in which a semitransparent blue-green field is placed on top of a red object (a tomato). The tomato appears red even though the pixels would appear green if viewed in isolation. We show that this phenomenon can be explained by a high-pass filter and by histogram equalization. The results suggest that this illusion does not require complex inferences about color constancy; rather, the tomato's red is available in the physical stimulus at the appropriate spatial scale and dynamic range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...