Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 13(1): e0326421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012338

RESUMEN

The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) "Leishbox" to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


Asunto(s)
Antiprotozoarios , Resistencia a Medicamentos , Dinamina I , Leishmania donovani , Leishmaniasis Visceral , Humanos , Antiprotozoarios/inmunología , Dinamina I/genética , Dinamina I/inmunología , Genómica , Leishmania donovani/genética , Leishmania donovani/inmunología , Leishmania donovani/parasitología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Filogenia , Estudios Retrospectivos , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/inmunología
2.
Sci Rep ; 8(1): 11765, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082744

RESUMEN

The growing drug resistance (DR) raises major concerns for the control of visceral leishmaniasis (VL), a neglected disease lethal in 95 percent of the cases if left untreated. Resistance has rendered antimonials (SSG) obsolete in the Indian Sub-Continent (ISC) and the first miltefosine-resistant Leishmania donovani were isolated. New chemotherapeutic options are needed and novel compounds are being identified by high-throughput screening (HTS). HTS is generally performed with old laboratory strains such as LdBOB and we aimed here to validate the activity of selected compounds against recent clinical isolates. In this academic/industrial collaboration, 130 compounds from the GSK "Leishbox" were screened against one SSG-sensitive and one SSG-resistant strain of L. donovani recently isolated from ISC patients, using an intracellular assay of L. donovani-infected THP1-derived macrophages. We showed that only 45% of the compounds were active in both clinical isolates and LdBOB. There were also different compound efficiencies linked to the SSG susceptibility background of the strains. In addition, our results suggested that the differential susceptibility profiles were chemical series-dependent. In conclusion, we demonstrate the potential value of including clinical isolates (as well as resistant strains) in the HTS progression cascade.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Células THP-1
3.
Trends Parasitol ; 33(3): 162-174, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27993477

RESUMEN

New drugs are needed to control leishmaniasis and efforts are currently on-going to counter the neglect of this disease. We discuss here the utility and the impact of associating drug resistance (DR) studies to drug discovery pipelines. We use as paradigm currently used drugs, antimonials and miltefosine, and complement our reflection by interviewing three experts in the field. We suggest DR studies to be involved at two different stages of drug development: (i) the efficiency of novel compounds should be confirmed on sets of strains including recent clinical isolates with DR; (ii) experimental DR should be generated to promising compounds at an early stage of their development, to further optimize them and monitor clinical trials.


Asunto(s)
Descubrimiento de Drogas , Resistencia a Medicamentos , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...