Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dent ; 135: 104601, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364728

RESUMEN

OBJECTIVES: This in vitro study investigated the ability of a blue protein-based hydroxyapatite porosity probe to selectively detect artificial enamel caries-like lesions of varying severities. METHODS: Artificial caries-like lesions were formed in enamel specimens using a hydroxyethylcellulose-containing lactic acid gel for 4/12/24/72 or 168 h. One untreated group was used as a control. The probe was applied for 2 min and unbound probe rinsed off with deionized water. Surface color changes were determined spectrophotometrically (L*a*b* color space) and with digital photography. Lesions were characterized using quantitative light-induced fluorescence (QLF), Vickers surface microhardness, and transverse microradiography (TMR). Data were analyzed using one-way ANOVA. RESULTS: Digital photography did not reveal any discoloration in unaffected enamel. However, all lesions stained blue with color intensity positively correlated with demineralization times. The color data reflected similar trends: lesions became significantly darker (L* decreased) and bluer (b* decreased), while overall color differences (ΔE) increased significantly after probe application (4-h lesion, mean±standard deviation: ΔL*=-2.6 ± 4.1/Δb*=0.1 ± 0.8/ΔE=5.5 ± 1.3 vs. 168-h lesion: ΔL*=-17.3 ± 1.1/Δb*=-6.0 ± 0.6/ΔE=18.7 ± 1.1). TMR analysis revealed distinct differences in integrated mineral loss (ΔZ) and lesion depth (L) between demineralization times (4-h lesion: ΔZ=391±190 vol%min × µm/L = 18.1 ± 10.9 µm vs. 168-h lesion: ΔZ=3606±499 vol%min × µm/L = 111.9 ± 13.9 µm). QLF and microhardness were also able to differentiate between demineralization times. L and ΔZ strongly correlated (Pearson correlation coefficient [r]) with Δb* (L vs. Δb*: r=-0.90/ΔZ vs. Δb*: r=-0.90), ΔE (r = 0.85/r = 0.81), and ΔL* (r=-0.79/r=-0.73). CONCLUSION: Considering the limitations of this study, the blue protein-based hydroxyapatite-binding porosity probe appears to be sufficiently sensitive to distinguish between unaffected enamel and artificial caries-like lesions. CLINICAL SIGNIFICANCE: Early detection of enamel caries lesions remains one of the most critical aspects in the diagnosis and management of dental caries. This study highlighted the potential of a novel porosity probe in detecting artificial caries-like demineralization by objective means.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Caries Dental/diagnóstico por imagen , Caries Dental/tratamiento farmacológico , Susceptibilidad a Caries Dentarias , Porosidad , Desmineralización Dental/diagnóstico por imagen , Desmineralización Dental/patología , Durapatita/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...