Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37429613

RESUMEN

A dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ±â€…14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.


Livestock methane (CH4) is the main source of greenhouse gases (GHGs) in agriculture, contributing to 11.6% of global GHGs emissions from human-related activities. Therefore, mitigating CH4 emissions from ruminant animals is a great opportunity for meeting the current climate targets. In this experiment, increasing inclusion rates of a promising CH4-mitigating compound, 3-nitrooxypropanol (3-NOP, from 50 to 125 mg of 3-NOP/kg of dry matter [DM]), were added to a barley-based feedlot diet containing 25 ppm of monensin and 7% fat (DM-basis) and fed to Angus steers. Under these conditions, increasing inclusion rate of 3-NOP reduced both production and yield of CH4 by up to 90%. Rumen fermentation, feed intake, and average daily gain were not affected by the 3-NOP dose. Our results on the potential CH4 suppression of 3-NOP may assist the feedlot industry towards sustainability by lowering its GHG output.


Asunto(s)
Compuestos de Amonio , Hordeum , Bovinos , Animales , Hordeum/metabolismo , Aceite de Brassica napus , Metano/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Fermentación , Rumen/metabolismo , Compuestos de Amonio/metabolismo , Compuestos de Amonio/farmacología
2.
Res Vet Sci ; 160: 30-38, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37263098

RESUMEN

Subacute ruminal acidosis (SARA) in feedlot cattle during the feed transition to grain-based diets is a significant constraint to animal health and productivity. This experiment assessed an antibiotic-free supplement (ProTect®) effects on ruminal pH variability and methane (CH4) emissions of cattle during the challenge of SARA. Ten 18-month-old Angus steers (472 ± 4.8 kg) were randomly allocated into monensin (n = 5) and ProTect® groups (n = 5) and progressively introduced to grain diets incorporating monensin or ProTect® for 36 days of the experiment [starter (7 days; 45% grain), T1 (7 days; 56% grain), T2 (7 days; 67% grain), finisher (15 days; 78% grain)]. The pH variability on the finisher period was reduced by the ProTect® supplement (6.6% vs. 5.2%; P < 0.01), with CH4 emissions being significantly higher relative to the monensin group [88.2 g/day (9.3 g CH4/kg DMI) vs. 133.7 g/day (14.1 g CH4/kg DMI); P < 0.01]. There was no difference between treatments in the time spent on the ruminal pH < 5.6 or < 5.8 (P > 0.05). The model evaluation for the ruminal pH variation indicated that the mean absolute error (MAE) proportion for both groups was good within the same range [4.05% (monensin) vs. 4.25% (ProTect®)] with identical root mean square prediction error (RMSPE) (0.34). It is concluded that the ProTect® supplement is an effective alternative to monensin for preventing SARA in feedlot cattle by managing ruminal pH variation during the transition to high-grain diets. Both monensin and ProTect® supplemented cattle exhibited lower CH4 yield compared to cattle fed forages and low-concentrate diets.


Asunto(s)
Acidosis , Enfermedades de los Bovinos , Bovinos , Animales , Monensina/farmacología , Monensina/metabolismo , Alimentación Animal/análisis , Antibacterianos/farmacología , Antibacterianos/metabolismo , Metano , Rumen/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Suplementos Dietéticos , Acidosis/prevención & control , Acidosis/veterinaria , Acidosis/metabolismo , Grano Comestible , Concentración de Iones de Hidrógeno , Fermentación , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/metabolismo
3.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511607

RESUMEN

Variation in nutrition is a key determinant of growth, body composition, and the ability of animals to perform to their genetic potential. Depending on the quality of feed available, animals may be able to overcome negative effects of prior nutritional restriction, increasing intake and rates of tissue gain, but full compensation may not occur. A 2 × 3 × 4 factorial serial slaughter study was conducted to examine the effects of prior nutritional restriction, dietary energy density, and supplemental rumen undegradable protein (RUP) on intake, growth, and body composition of lambs. After an initial slaughter (n = 8), 124 4-mo-old Merino cross wethers (28.4 ± 1.8 kg) were assigned to either restricted (LO, 500 g/d) or unrestricted (HI, 1500 g/d) intake of lucerne and oat pellets. After 8 wk, eight lambs/group were slaughtered and tissue weights and chemical composition were measured. Remaining lambs were randomly assigned to a factorial combination of dietary energy density (7.8, 9.2, and 10.7 MJ/kg DM) and supplemental RUP (0, 30, 60, and 90 g/d) and fed ad libitum for a 12- to 13-wk experimental period before slaughter and analysis. By week 3 of the experimental period, lambs fed the same level of energy had similar DMI (g/d) and MEI (MJ/d) (P > 0.05), regardless of prior level of nutrition. Restricted-refed (LO) lambs had higher rates of fat and protein gain than HI lambs (P < 0.05) but had similar visceral masses (P > 0.05). However, LO lambs were lighter and leaner at slaughter, with proportionally larger rumens and livers (P < 0.05). Tissue masses increased with increasing dietary energy density, as did DMI, energy and nitrogen (N) retention (% intake), and rates of protein and fat gain (P < 0.05). The liver increased proportionally with increasing dietary energy density and RUP (P < 0.05), but rumen size decreased relative to the empty body as dietary energy density increased (P < 0.05) and did not respond to RUP (P > 0.05). Fat deposition was greatest in lambs fed 60 g/d supplemental RUP (P < 0.05). However, lambs fed 90 g/d were as lean as lambs that did not receive supplement (P0, P > 0.05), with poorer nitrogen retention and proportionally heavier livers than P0 lambs (P < 0.05). In general, visceral protein was the first tissue to respond to increased intake during refeeding, followed by non-visceral protein and fat, highlighting the influence of differences in tissue response over time on animal performance and body composition.


Animal performance is determined by the combined effects of both prior and current nutrition. The present study used a 2 × 3 × 4 factorial to examine the effects of prior feeding level (HI or LO) on subsequent ad-libitum intake of diets varying in energy density (7.8, 9.2, 10.7 MJ/kg DM) and level of supplemental rumen undegradable protein (RUP; 0, 30, 60, and 90g/d). By week 3 of refeeding, LO and HI lambs had similar feed intake, but LO lambs had proportionally more gut and liver tissue and were lighter and leaner at final slaughter. As dietary energy density increased, the rumen became proportionally smaller while the liver became proportionally larger. Liver size increased with increasing RUP, and lambs fed 30 and 60 g/d were fatter than other lambs. However, lambs fed 90 g/d RUP had less fat than other lambs, as the increased energy requirements of a larger liver and of disposing of excess nitrogen appeared to outweigh any nutritional benefits. Understanding how prior nutrition affects current performance, as well as how tissues vary in their response to the same diet, is key to improving our understanding of animal performance and response to change.


Asunto(s)
Alimentación Animal , Rumen , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Masculino , Nitrógeno/metabolismo , Rumen/metabolismo , Ovinos , Oveja Doméstica
4.
Anim Nutr ; 7(4): 1219-1230, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34754963

RESUMEN

Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000-2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.

5.
Animals (Basel) ; 11(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920600

RESUMEN

Identifying the licking behaviour in beef cattle may provide a means to measure time spent licking for estimating individual block supplement intake. This study aimed to determine the effectiveness of tri-axial accelerometers deployed in a neck-collar and an ear-tag, to characterise the licking behaviour of beef cattle in individual pens. Four, 2-year-old Angus steers weighing 368 ± 9.3 kg (mean ± SD) were used in a 14-day study. Four machine learning (ML) algorithms (decision trees [DT], random forest [RF], support vector machine [SVM] and k-nearest neighbour [kNN]) were employed to develop behaviour classification models using three different ethograms: (1) licking vs. eating vs. standing vs. lying; (2) licking vs. eating vs. inactive; and (3) licking vs. non-licking. Activities were video-recorded from 1000 to 1600 h daily when access to supplement was provided. The RF algorithm exhibited a superior performance in all ethograms across the two deployment modes with an overall accuracy ranging from 88% to 98%. The neck-collar accelerometers had a better performance than the ear-tag accelerometers across all ethograms with sensitivity and positive predictive value (PPV) ranging from 95% to 99% and 91% to 96%, respectively. Overall, the tri-axial accelerometer was capable of identifying licking behaviour of beef cattle in a controlled environment. Further research is required to test the model under actual grazing conditions.

6.
J Anim Sci ; 98(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776133

RESUMEN

This experiment investigated phenotypic and genetic relationships between carbon dioxide production, methane emission, feed intake, and postweaning traits in Angus cattle. Respiration chamber data on 1096 young bulls and heifers from 2 performance recording research herds of Angus cattle were analyzed to provide phenotypic and genetic parameters for carbon dioxide production rate (CPR; n = 425, mean 3,010 ± SD 589 g/d) and methane production rate (MPR; n = 1,096, mean 132.8 ± SD 25.2 g/d) and their relationships with dry matter intake (DMI; n = 1,096, mean 6.15 ± SD 1.33 kg/d), body weight (BW) and body composition traits. Heritability estimates were moderate to high for CPR (0.53 [SE 0.17]), MPR (0.31 [SE 0.07]), DMI (0.49 [SE 0.08]), yearling BW (0.46 [SE 0.08]), and scanned rib fat depth (0.42 [SE 0.07]). There was a strong phenotypic (0.83 [SE 0.02]) and genetic (0.75 [SE 0.10]) correlation between CPR and MPR. The correlations obtained for DMI with CPR and with MPR were high, both phenotypically (rp) and genetically (rg) (rp: 0.85 [SE 0.01] and 0.71 [SE 0.02]; rg (0.95 [SE 0.03] and 0.83 [SE 0.05], respectively). Yearling BW was strongly correlated phenotypically (rp ≥ 0.60) and genetically (rg > 0.80) with CPR, MPR, and DMI, whereas scanned rib fat was weakly correlated phenotypically (rp < 0.20) and genetically (rg ≤ 0.20) with CPR, MPR, and DMI. The strong correlation between both CPR and MPR with DMI confirms their potential use as proxies for DMI in situations where direct DMI recording is not possible such as on pasture.


Asunto(s)
Dióxido de Carbono/metabolismo , Bovinos/genética , Metano/metabolismo , Animales , Composición Corporal/genética , Peso Corporal/genética , Bovinos/crecimiento & desarrollo , Bovinos/fisiología , Femenino , Masculino , Fenotipo
7.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1242-1255, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333622

RESUMEN

Nitrate ( NO 3 - ) supplementation is an effective methane (CH4 ) mitigation strategy for ruminants but may produce nitrite ( NO 2 - ) toxicity. It has been reported that rumen protozoa have greater ability for NO 3 - and NO 2 - reduction than bacteria. It was hypothesised that the absence of ruminal protozoa in sheep may lead to higher NO 2 - accumulation in the rumen and a higher blood methaemoglobin (MetHb) concentration. An in vivo experiment was conducted with defaunated (DEF) and faunated (FAU) sheep supplemented with 1.8% NO 3 - in DM. The effects of rumen protozoa on concentrations of plasma and ruminal NO 3 - and NO 2 - , blood MetHb, ruminal volatile fatty acid (VFA) and ruminal ammonia (NH3 ) were investigated. Subsequently, two in vitro experiments were conducted to determine the contribution of protozoa to NO 3 - and NO 2 - reduction rates in DEF and FAU whole rumen digesta (WRD) and its liquid (LIQ) and solid (SOL) fractions, incubated alone (CON), with the addition of NO 3 - or with the addition of NO 2 - . The results from the in vivo experiment showed no differences in total VFA concentrations, although ruminal NH3 was greater (p < .01) in FAU sheep. Ruminal NO 3 - , NO 2 - and plasma NO 2 - concentrations tended to increase (p < .10) 1.5 hr after feeding in FAU relative to DEF sheep. In vitro results showed that NO 3 - reduction to NH3 was stimulated (p < .01) by incoming NO 3 - in both DEF and FAU relative to CON digesta. However, adding NO 3 - increased (p < .05) the rate of NO 2 - accumulation in the SOL fraction of DEF relative to both fractions of FAU digesta. Results observed in vivo and in vitro suggest that NO 3 - and NO 2 - are more rapidly metabolised in the presence of rumen protozoa. Defaunated sheep may have an increased risk of NO 2 - poisoning due to NO 2 - accumulation in the rumen.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Nitratos/metabolismo , Nitritos/metabolismo , Rumen/metabolismo , Ovinos/fisiología , Amoníaco , Animales , Suplementos Dietéticos , Eucariontes , Femenino , Fermentación , Contenido Digestivo/química , Concentración de Iones de Hidrógeno , Rumen/química , Rumen/parasitología , Ovinos/metabolismo
8.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1657-1662, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31418937

RESUMEN

Nitrate (NO3 ¯ ) is an effective non-protein nitrogen source for gut microbes and reduces enteric methane (CH4 ) production in ruminants. Nitrate is reduced to ammonia by rumen bacteria with nitrite (NO2 ¯ ) produced as an intermediate. The absorption of NO2 ¯ can cause methaemoglobinaemia in ruminants. Metabolism of NO3 ¯ and NO2 ¯ in blood and animal tissues forms nitric oxide (NO) which has profound physiological effects in ruminants and has been shown to increase glucose uptake and insulin secretion in rodents and humans. We hypothesized that absorption of small quantities of NO2 ¯ resulting from a low-risk dose of dietary NO3 ¯ will increase insulin sensitivity (SI ) and glucose uptake in sheep. We evaluated the effect of feeding sheep with a diet supplemented with 18 g NO3 ¯ /kg DM or urea (Ur) isonitrogenously to NO3 ¯ , on insulin and glucose dynamics. A glucose tolerance test using an intravenous bolus of 1 ml/kg LW of 24% (w/v) glucose was conducted in twenty sheep, with 10 sheep receiving 1.8% supplementary NO3 ¯ and 10 receiving supplementary urea isonitrogenously to NO3 ¯ . The MINMOD model used plasma glucose and insulin concentrations to estimate basal plasma insulin (Ib ) and basal glucose concentration (Gb ), insulin sensitivity (SI ), glucose effectiveness (SG ), acute insulin response (AIRg) and disposition index (DI). Nitrate supplementation had no effect on Ib (p > .05). The decrease in blood glucose occurred at the same rate in both dietary treatments (SG ; p = .60), and there was no effect of NO3 ¯ on either Gb , SI , AIRg or DI. This experiment found that the insulin dynamics assessed using the MINMOD model were not affected by NO3 ¯ administered to fasted sheep at a low dose of 1.8% NO3 ¯ in the diet.


Asunto(s)
Alimentación Animal/análisis , Glucemia/efectos de los fármacos , Dieta/veterinaria , Resistencia a la Insulina/fisiología , Nitratos/farmacología , Ovinos/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Suplementos Dietéticos , Metahemoglobinemia/veterinaria , Nitratos/administración & dosificación , Nitritos/sangre , Ovinos/sangre , Urea/administración & dosificación , Urea/farmacología
9.
J Anim Sci ; 97(5): 2202-2219, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-30789654

RESUMEN

This experiment was to evaluate a suite of biological traits likely to be associated with genetic variation in residual feed intake (RFI) in Angus cattle. Twenty nine steers and 30 heifers bred to be divergent in postweaning RFI (RFIp) and that differed in midparent RFIp-EBV (RFIp-EBVmp) by more than 2 kg DMI/d were used in this study. A 1-unit (1 kg DM/d) decrease in RFIp-EBVmp was accompanied by a 0.08 kg (SE = 0.03; P < 0.05) increase in ADG, a 0.58 kg/d (0.17; P < 0.01) decrease in DMI, a 0.89 kg/kg (0.22; P < 0.001) decrease in FCR, and a 0.62 kg/d (0.12; P < 0.001) decrease in feedlot RFI (RFIf). Ultrasonically scanned depths of subcutaneous fat at the rib and rump sites, measured at the start and end of the RFI test, all had strong positive correlations with RFIp-EBVmp, DMI, and RFIf (all r values ≥0.5 and P < 0.001). Variation in RFIp-EBVmp was significantly correlated (P < 0.05) with flight speed (r = -0.32), number of visits to feed bins (r = 0.45), and visits to exhaled-emission monitors (r = -0.27), as well as the concentrations of propionate (r = -0.32) and valerate (r = -0.31) in rumen fluid, white blood cell (r = -0.51), lymphocyte (r = -0.43), and neutrophil (r = -0.31) counts in blood. RFIp-EBVmp was also correlated with the cellular immune response to vaccination (r = 0.25; P < 0.1) and heat production in fasted cattle (r = -0.46; P < 0.001). Traits that explained significant variation (P < 0.05) in DMI over the RFI test were midtest metabolic-BW (44.7%), rib fat depth at the end of test (an additional 18%), number of feeder visits (additional 5.7%), apparent digestibility of the ration by animals (additional 2.4%) and white blood-cell count (2.1%), and the cellular immune response to vaccine injection (additional 1.1%; P < 0.1), leaving ~23% of the variation in DMI unexplained. The same traits (BW excluded) explained 33%, 12%, 3.6%, 3.7%, and 3.1%, and together explained 57% of the variation in RFIf. This experiment showed that genetic variation in RFI was accompanied by variation in estimated body composition, behavior, rumen, fasted heat production, hematology, and immune competence traits, and that variation in feedlot DMI and RFIf was due to differences in BW, scanned fatness, and many other factors in these cattle fed ad libitum and able to display any innate differences in appetite, temperament, feeding behavior, and activity.


Asunto(s)
Alimentación Animal/análisis , Composición Corporal , Bovinos/genética , Ingestión de Alimentos , Conducta Alimentaria , Variación Genética , Animales , Peso Corporal/genética , Bovinos/sangre , Bovinos/inmunología , Bovinos/fisiología , Dieta/veterinaria , Femenino , Masculino , Fenotipo , Rumen , Termogénesis
10.
Br J Nutr ; 111(4): 578-85, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24103253

RESUMEN

In the present study, following the measurement of methane emissions from 160 mature ewes three times, a subset of twenty ewes was selected for further emission and physiological studies. Ewes were selected on the basis of methane yield (MY; g CH4/kg DM intake) being low (Low MY: >1 sd below the mean; n 10) or high (High MY: >1 sd above the mean; n 10) when fed a blended chaff ration at a fixed feeding level (1·2-fold maintenance energy requirements). The difference between the Low- and High-MY groups observed at the time of selection was maintained (P= 0·001) when remeasured 1-7 months later during digesta kinetics studies. Low MY was associated with a shorter mean retention time of particulate (P< 0·01) and liquid (P< 0·001) digesta, less amounts of rumen particulate contents (P< 0·01) and a smaller rumen volume (P< 0·05), but not apparent DM digestibility (P= 0·27) or urinary allantoin excretion (P= 0·89). Computer tomography scanning of the sheep's rumens after an overnight fast revealed a trend towards the Low-MY sheep having more clearly demarcated rumen gas and liquid phases (P= 0·10). These findings indicate that the selection of ruminants for low MY may have important consequences for an animal's nutritional physiology.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Fibras de la Dieta/metabolismo , Digestión , Metano/metabolismo , Rumen/metabolismo , Ovinos/metabolismo , Alimentación Animal , Animales , Femenino , Tránsito Gastrointestinal , Efecto Invernadero , Rumen/anatomía & histología , Rumen/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...