Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(31): 36143-36156, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901316

RESUMEN

Two aromatic polyamides─poly(3,3'-dihydroxybenzidine terephthalamide) (DHTA) and poly(3,3'-dihydroxybenzidine isophthalamide) (DHIA)─are compared for their ability to remove salts from water. DHTA is linear and rigid whereas DHIA is nonlinear and semirigid. DHTA and DHIA were selected as they allow us to investigate the effect of polymer backbone geometry on salt exclusion in a non-crosslinked thin film membrane, independently of the backbone chemistry. Because of their differences in solution viscosity, spin coating parameters for DHTA and DHIA solutions were optimized separately to produce thin film composites (TFCs) with reproducible membrane properties. The resulting DHTA TFCs displayed salt rejections of 87.8% (NaCl), 97.0% (MgSO4), and 80.3% (CaCl2). In comparison, DHIA TFCs demonstrated poor salt rejections of 21.0% (NaCl), 29.3% (MgSO4), and 15.4% (CaCl2). Cross-sectional SEM images of DHTA and DHIA films reveal that DHTA has a stratified (layered) morphology whereas DHIA exhibits a dense, featureless morphology. Both DHTA and DHIA TFCs exhibit similar surface morphology, contact angle, surface charge, and water uptake. PEG rejection experiments indicate that the average pore size of DHTA TFCs is ∼2 nm while DHIA TFCs have an average pore size of ∼3 nm. Our findings illustrate that using a rigid, linear aromatic polyamide gives an active layer with a stratified morphology, uniplanar orientation, smaller pores, and higher salt rejection, whereas the nonlinear aromatic polyamide analogue results in an isotropic active layer with larger pores and lower salt rejection.

2.
ACS Appl Mater Interfaces ; 14(14): 16592-16600, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35330991

RESUMEN

We report on the morphology and mechanical properties of nanocomposite films derived from aqueous, hybrid liquid crystalline mixtures of rodlike aggregates of a sulfonated, all-aromatic polyamide, poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), and graphene oxide (GO) platelets. An isothermal step at 200 °C facilitates in situ partial thermal reduction of GO to reduced GO (rGO) in nanocomposite films. X-ray scattering studies reveal that PBDT-rGO nanocomposites exhibit both higher in-plane alignment of PBDT (the order parameter increases from 0.79 to 0.9 at 1.8 vol % rGO) and alignment along the casting direction (from 0.1 to 0.6 at 1.8 vol % rGO). From dynamic mechanical thermal analysis, the interaction between PBDT and rGO causes the ß-relaxation activation energy for PBDT to increase with rGO concentration. Modulus mapping of nanocomposites using atomic force microscopy demonstrates enhanced local stiffness, indicating reinforcement. From stress-strain analysis, the average Young's modulus increases from 16 to 37 GPa at 1.8 vol % rGO and the average tensile strength increases from 210 to 640 MPa. Despite polymer alignment along the casting direction, an average transverse tensile strength of 230 MPa is obtained.

3.
ACS Appl Mater Interfaces ; 13(44): 52647-52658, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705410

RESUMEN

Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.

4.
ACS Appl Mater Interfaces ; 13(40): 48061-48070, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34587443

RESUMEN

Recent advances in vat photopolymerization (VP) additive manufacturing of fully aromatic polyimides employed photoreactive high-molecular-weight precursors dissolved at modest loadings (<20 wt %) in organic solvent. These earlier efforts revealed high isotropic shrinkage, approaching 52% on a linear basis while converting to the desired polyimide. To increase the polyimide precursor concentration and decrease shrinkage during VP processing of high-performance polyimides, photoreactive fully aromatic polyimide and thermoplastic polyetherimide (PEI) supramolecular salt precursors now serve as versatile alternatives. Both pyromellitic dianhydride-4,4'-oxydianiline (PMDA-ODA) and 4,4'-(4,4'-isopropylidene-diphenoxy)diphthalic anhydride-meta phenylene diamine (BPADA-mPD) supramolecular dicarboxylate-diammonium salts, termed polysalts, provided prerequisite rheological performance and photoreactivity for VP. Solutions (50 wt %) of both photoactive polysalts exhibited viscosities more than two orders of magnitude lower than previously reported polyimide precursor solutions for VP. In addition, VP of 50 wt % polysalt solutions yielded high resolution, self-supporting organogel structures. During thermal postprocessing to the desired fully aromatic polyimide and PEI, photocrosslinked polysalt organogels exhibited retention of part shape in concert with linear isotropic shrinkage of only 26%, the lowest reported value using organogel strategies for VP of fully aromatic polyimides. Furthermore, the imidized structures exhibited comparable thermal and mechanical properties to analogous polyimides synthesized using classical methodologies for 2D films. The combination of facile synthesis and increased precursor concentrations designates polysalt polyimide precursors as a versatile platform for additive manufacturing of well-defined 3D polyimide structures.

5.
ACS Macro Lett ; 10(4): 412-418, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549232

RESUMEN

Fully aromatic polyimides are amenable to efficient carbonization in thin two-dimensional (2D) films due to a complement of aromaticity and planarity of backbone repeating units. However, repeating unit rigidity traditionally imposes processing limitations, restricting many fully aromatic polyimides, e.g., pyromellitic dianhydride with 4,4'-oxidianiline (PMDA-ODA) polyimides, to a 2D form factor. Recently, research efforts in our laboratories enabled additive manufacturing of micron-scale resolution PMDA-ODA polyimide objects using vat photopolymerization (VP) and ultraviolet-assisted direct ink write (UV-DIW) following careful thermal postprocessing of the three-dimensional (3D) organogel precursors to 400 °C. Further thermal postprocessing of printed objects to 1000 °C induced pyrolysis of the PMDA-ODA objects to disordered carbon. The pyrolyzed objects retained excellent geometric resolution, and Raman spectroscopy displayed characteristic disordered (D) and graphitic (G) carbon bands. Scanning electron microscopy probed the cross-sectional homogeneity of the carbonized samples, revealing an absence of pore formation during carbonization. Likewise, impedance analysis of carbonized specimens indicated only a moderate decrease in conductivity compared to thin films that were pyrolyzed using an identical carbonization process. Facile pyrolysis of PMDA-ODA objects now enables the production of carbonaceous monoliths with complex and predictable three-dimensional geometries using commercially available starting materials.


Asunto(s)
Impresión Tridimensional , Pirólisis , Carbono/química , Estudios Transversales , Espectrometría Raman
6.
ACS Appl Mater Interfaces ; 12(9): 10918-10928, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32028758

RESUMEN

Vat photopolymerization (VP) additive manufacturing fabricates intricate geometries with excellent resolution; however, high molecular weight polymers are not amenable to VP due to concomitant high solution and melt viscosities. Thus, a challenging paradox arises between printability and mechanical performance. This report describes concurrent photopolymer and VP system design to navigate this paradox with the unprecedented use of polymeric colloids (latexes) that effectively decouple the dependency of viscosity on molecular weight. Photocrosslinking of a continuous-phase scaffold, which surrounds the latex particles, combined with in situ computer-vision print parameter optimization, which compensates for light scattering, enables high-resolution VP of high molecular weight polymer latexes as particle-embedded green bodies. Thermal post-processing promotes coalescence of the dispersed particles throughout the scaffold, forming a semi-interpenetrating polymer network without loss in part resolution. Printing a styrene-butadiene rubber latex, a previously inaccessible elastomer composition for VP, exemplified this approach and yielded printed elastomers with precise geometry and tensile extensibilities exceeding 500%.

7.
Nat Commun ; 11(1): 830, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047162

RESUMEN

Combining polymers with small amounts of stiff carbon-based nanofillers such as graphene or graphene oxide is expected to yield low-density nanocomposites with exceptional mechanical properties. However, such nanocomposites have remained elusive because of incompatibilities between fillers and polymers that are further compounded by processing difficulties. Here we report a water-based process to obtain highly reinforced nanocomposite films by simple mixing of two liquid crystalline solutions: a colloidal nematic phase comprised of graphene oxide platelets and a nematic phase formed by a rod-like high-performance aramid. Upon drying the resulting hybrid biaxial nematic phase, we obtain robust, structural nanocomposites reinforced with graphene oxide.

8.
ACS Macro Lett ; 9(7): 957-963, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648607

RESUMEN

We report irreversible, shear-activated gelation in liquid crystalline solutions of a rigid polyelectrolyte that forms rodlike assemblies (rods) in salt-free solution. At rest, the liquid crystalline solutions are kinetically stable against gelation and exhibit low viscosities. Under steady shear at, or above, a critical shear rate, a physically cross-linked, nematic gel network forms due to linear growth and branching of the rods. Above a critical shear rate, the time scale of gelation can be tuned from hours to nearly instantaneously by varying the shear rate and solution concentration. The shear-activated gels are distinct in their structure and rheological properties from thermoreversible gels. At a fixed concentration, the induction time prior to gelation decreases exponentially with the shear rate. This result indicates that shear-activated thermalization of the electrostatically stabilized rods overcomes the energy barrier for rod-rod contact, enabling rod fusion and subsequent irreversible network formation.

9.
ACS Appl Mater Interfaces ; 11(43): 40551-40563, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31507155

RESUMEN

Polymer electrolyte membranes (PEMs) with high volume fractions of ionic liquids (IL) and high modulus show promise for enabling next-generation gas separations, and electrochemical energy storage and conversion applications. Herein, we present a conductive polymer-IL composite based on a sulfonated all-aromatic polyamide (sulfo-aramid, PBDT) and a model IL, which we term a PBDT-IL composite. The polymer forms glassy and high-aspect-ratio hierarchical nanofibrils, which enable fabrication of PEMs with both high volume fractions of IL and high elastic modulus. We report direct evidence for nanofibrillar networks that serve as matrices for dispersed ILs using atomic force microscopy and small- and wide-angle X-ray scattering. These supramolecular nanofibrils form through myriad noncovalent interactions to produce a physically cross-linked glassy network, which boasts the best combination of room-temperature modulus (0.1-2 GPa) and ionic conductivity (8-4 mS cm-1) of any polymer-IL electrolyte reported to date. The ultrahigh thermomechanical properties of our PBDT-IL composites provide high moduli (∼1 GPa) at temperatures up to 200 °C, enabling a wide device operation window with stable mechanical properties. Together, the high-performance nature of sulfo-aramids in concert with the inherent properties of ILs imparts PBDT-IL composites with nonflammability and thermal stability up to 350 °C. Thus, nanofibrillar ionic networks based on sulfo-aramids and ILs represent a new design paradigm affording PEMs with exceptionally high moduli at exceedingly low polymer concentrations. This new design strategy will drive the development of new high-performance conductive membranes that can be used for the design of gas separation membranes and in electrochemical applications, such as fuel cells and Li-metal batteries.

10.
Nat Commun ; 10(1): 801, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778067

RESUMEN

The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we report a double helical conformation in the densely charged aromatic polyamide poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~ 1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of other 1D-reinforced composites.


Asunto(s)
Ftalimidas/química , Polielectrolitos/química , Polímeros/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Difracción de Rayos X
11.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28626968

RESUMEN

High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies.

12.
Soft Matter ; 12(8): 2309-14, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26781457

RESUMEN

We report the structural characterization of the nematic phase of 2,6-biphenyl naphthalene (PPNPP). This lath-like all-aromatic mesogen provides a valuable benchmark for classical theories of nematic order. PPNPP exhibits a very high temperature nematic phase (417-489 °C) above an enantiotropic smectic A phase. X-ray diffraction reveals a surprisingly strong tendency towards molecular layering in the nematic phase, indicative of "normal cybotaxis" (i.e. SmA-like stratification within clusters of mesogens). Although stronger at low temperatures, the layering is evident well above the smectic A-nematic transition. The nematic order parameter is evaluated as a function of temperature from the broadening of the wide-angle diffuse diffraction feature. Measured values of the orientational order parameter are slightly larger than those predicted by the Maier-Saupe theory over the entire nematic range except for a narrow region just below the clearing point where they significantly drop below the theoretical prediction.

13.
Chemistry ; 19(35): 11577-89, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23852805

RESUMEN

The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities along the carbon backbone of st-PEA could perhaps be expected to lead directly to rigid-rod behavior, molecular modeling reveals that individual st-PEA chains are actually highly flexible and should not reveal rigid-rod induced LC behavior. Nonetheless, st-PEA clearly reveals LC behavior, both in solution and in the melt over a broad elevated temperature range. A combined set of experimental measurements, supported by MM/MD studies, suggests that the observed LC behavior is due to self-aggregation of st-PEA into higher-order aggregates. According to MM/MD modeling st-PEA single helices adopt a flexible helical structure with a preferred trans-gauche syn-syn-anti-anti orientation. Unexpectedly, similar modeling experiments suggest that three of these helices can self-assemble into triple-helical aggregates. Higher-order assemblies were not observed in the MM/MD simulations, suggesting that the triple helix is the most stable aggregate configuration. DLS data confirmed the aggregation of st-PEA into higher-order structures, and suggest the formation of rod-like particles. The dimensions derived from these light-scattering experiments correspond with st-PEA triple-helix formation. Langmuir-Blodgett surface pressure-area isotherms also point to the formation of rod-like st-PEA aggregates with similar dimensions as st-PEA triple helixes. Upon increasing the st-PEA concentration, the viscosity of the polymer solution increases strongly, and at concentrations above 20 wt % st-PEA forms an organogel. STM on this gel reveals the formation of helical aggregates on the graphite surface-solution interface with shapes and dimensions matching st-PEA triple helices, in good agreement with the structures proposed by molecular modeling. X-ray diffraction, WAXS, SAXS and solid state NMR spectroscopy studies suggest that st-PEA triple helices are also present in the solid state, up to temperatures well above the melting point of st-PEA. Formation of higher-order aggregates explains the observed LC behavior of st-PEA, emphasizing the importance of the "tertiary structure" of synthetic polymers on their material properties.


Asunto(s)
Carbono/química , Sustancias Macromoleculares/química , Polímeros/química , Cristales Líquidos , Modelos Químicos , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...